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I.
Introduction

PEEM3 contains a number of dodecapole elements which can act as combined deflectors and stigmators.  Some of these contain magnetic as well as electric elements.  For use in simulation, we want a first-order (Gaussian) optic description of these elements for the case where they are not very strong.  Therefore, we want to describe them in the limit analogous to Rose's explanation of quadrupoles in the limit [image: image1.wmf]1

k
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Once we have described the optics of a single deflector, we need to consider a pair, since that's how they are used.  The last half of this note addresses the issue of how to specify the action of a deflector pair and relate this to the dipole and quadrupole fields.

II.
Ray equation


We assume that the only nonvanishing multipoles are the dipole and quadrupole, and further assume that the box (SCOFF) approximation works.  We do not assume that the electric and magnetic multipoles are oriented along the same axis.  The paraxial ray equation, in a straight coordinate system is:
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where the coefficients are:
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We use a straight coordinate system because the deflector is straight even when it induces a curved path.  The equations also come out simpler this way.  Note that for the case of a pure electric dipole, the homogeneous part is proportional to [image: image4.wmf]11111
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, which vanishes when the angles of [image: image5.wmf]1

F

 and [image: image6.wmf]w

 are perpendicular, for instance if the electric field is along [image: image7.wmf]x

 and the ray is in the [image: image8.wmf]yz

-plane, which is what should happen.


We can make some important simplifications to these equations if we introduce as parameters the curvatures induced by the dipole fields and the focusing power induced by the quadrupole fields.  The curvatures are given by:
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where the subscripts + and - refer to rays going forward or backward through the optic.  The electrostatic fields cause the same sign of deflection regardless of particle direction as viewed in a laboratory frame, but from the ray's point of view, a right turn going into the device in one direction becomes a left turn coming back the other but an upward kick remains an upward kick.  In other words, looking backward along the ray path is equivalent to reflecting about the 
[image: image10.wmf]yz

 plane, i.e., 
[image: image11.wmf];

xxyy

®-®

 or 
[image: image12.wmf]ww
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.  Thus, if we generalize (1)

 to read
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then on turning an electrostatic element around, we replace 
[image: image14.wmf]w

 with 
[image: image15.wmf]w

-

 and require that the coefficients remain the same:
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with 
[image: image17.wmf]U

%

 being the coefficients in the reversed frame.  Taking the complex conjugate, we find that
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for electric elements.  Magnetic elements are odd under time reversal, so there's an extra - sign.  Thus, for an electric-only deflector.
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where 
[image: image20.wmf]C

 is a hexapole strength.

Taking these symmetry relations into account, the effective quadrupole strengths are given by
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and don't have such a reversal of the sign of the electric part.  These quantities are the parameters which would be relevant for a purely quadrupole system.  The focusing power in the x-direction for an electric-only quadrupole characterized by a strength [image: image22.wmf]GGG

+-

==

 and a length [image: image23.wmf]l

 is [image: image24.wmf]1/
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Because we are using a paraxial formulation in which [image: image25.wmf]k

 is considered only to first order, we can't capture the dependence of the lensing action on the energy.  However, we can put in the first-order energy dependence of the curvatures (3)

. Since we're interested in weak effects, this neglect shouldn't cause us too much trouble.


With these substitutions, we come to forms for [image: image26.wmf],,

TGD

 which are based on parameters whose significance can be seen more intuitively than those of the multipole strengths:
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Note that [image: image28.wmf]T

 is real whereas [image: image29.wmf]G

 and [image: image30.wmf]D

 are complex.

III.
Approximate solution


Now that we have the ray equation, we want to solve it.  This equation can be solved exactly, but the result would be a mess involving the eigenvalues and eigenvectors of a 4x4 matrix.  Instead, we will follow the thin-lens model and do an iterative solution.  We start with the integral representation of (1)

:


[image: image31.wmf]1

2

001222

00

(()())

2

z

z

Dz

wwzwdzdzTwzGwz

¢

=++-+

òò


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (10)

where the deflector is considered to start at [image: image32.wmf]0

z

=

 and extend to [image: image33.wmf]zl

=

.  If we drop the integral terms, we get just the dispersion. If we put that form back into the integral, we find a first approximation which includes the lens action and a modified form for the dispersion:
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This is the lowest-order form which includes the effects we want.  Evaluating the derivatives at [image: image35.wmf]zl

=

, we get a form which may be written as:
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The [image: image37.wmf]ij

a

 coefficients are real because [image: image38.wmf]T

 is real, while the [image: image39.wmf]ij

b

 are complex.


It is well-known that a weak deflector acts like a thin element centered at its midpoint.  Therefore, let us refer both the input and output rays to the plane [image: image40.wmf]/2

zl

=

.  Thus, the input and output rays are described by
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Performing these substitutions and dropping terms of second order in [image: image42.wmf],,

DTG

 yields the much-simpler form
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If [image: image44.wmf]G

 is real, these forms resemble those for a thin lens followed by a small translation.  However, the determinant of the corresponding Gauss matrix deviates from unity by terms of second order in the field strengths [image: image45.wmf],

TG

.  This is not surprising because the formalism we used is only good to lowest order in the fields, but one would like a form which does conserve phase-space area.  Suppose first that [image: image46.wmf]G

 is real.  Then, the equations, in real coordinates are
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which to first order are the equations for a lens followed by a translation or vice versa.  Now, to make it truly symplectic, we could use the fact that a lens and a translation are both symplectic and simply compose the two elements together.  This would automatically add higher-order terms in such a way as to conserve phase-space area.  There are three obvious choices for how to do this operation: the translation could go before the lens, after the lens, or the lens could go between two half-length translations.  The last possibility is the most elegant and symmetrical, so I choose it, even though it takes more operations than the other two.  The translation amount is different for the two sections, being [image: image48.wmf]3
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 for the x-section and [image: image49.wmf]3
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 for the y.  Still, these arguments suggest that we can do the proper transformation in steps:
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What about the case in which [image: image51.wmf]G

 is complex?  Writing down the first step of (16)

 in explicit 
 form leads to a Gauss matrix whose determinant is obviously unity:
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Similarly, the middle (lens) part leads to a matrix with off-diagonal elements only in the lower triangle:
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so that we have
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with the second form being more suitable for computer calculations on beams containing many particles, as only one vector addition and one matrix-vector multiplication are required per particle.  The dispersion terms are not obvious, but are packed up in the [image: image56.wmf]k

-dependence of [image: image57.wmf]D

, which in turn yields a dispersion term in [image: image58.wmf]01

k

=+

KKK

.  Secondary chromatic effects, i.e. the chromatic dependence of the lens action, are not described at all in this first-order formalism.


The deflectors have been specified as dodecapoles in order to allow us to put in a hexapole correction.  Since this is supposed to be a small effect, we can put it in with the simplest possible form:
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where [image: image60.wmf]C

 is the hexapole coefficient and has dimensions of [image: image61.wmf]2

length

-

.

IV.
Double deflector


The results above hold for a single deflector.  However, the deflectors are actually used in pairs, with the aim being to modify the path in some easy-to-understand way.  Let us for now restrict ourselves to one section and consider what we might want to do.  First, think about the deflectors in the objective arm.  These sit between the back focal plane (BFP) of the objective and its back image plane (BIP).  For the dipole effects, two things we might want to do are to move the image and change its angle of incidence at the image plane.  Let the distance between the BFP and BIP be [image: image62.wmf]L

, that between the BFP and the first deflector be [image: image63.wmf]xL

, and that between the BFP and the second deflector be [image: image64.wmf]yL

.  Then, if we want to have the beam move by a distance [image: image65.wmf]w

D

 at the image plane, and the incidence slope change by [image: image66.wmf]w
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, we find that
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where [image: image68.wmf]1

l

is the effective length of the first deflector, and
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where [image: image70.wmf]2

p

is the focusing power of the second deflector in the section under consideration.  I use the [image: image71.wmf]w

 notation because in the absence of focusing (first approximation), the complex [image: image72.wmf]G

 is related to the complex [image: image73.wmf],

ww
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 by 
(22)

.  The complex-conjugate symbol on (21)

 and  GOTOBUTTON ZEqnNum575677  \* MERGEFORMAT  then becomes needed due to the quadrupole symmetry of 
[image: image75.wmf]2

p

.  This is all assuming, of course, that the deflectors act as thin optical elements.  In first approximation, this is indeed true as shown above.  Also, the above ignores dispersion.  In principle, one could try to correct off some dispersion by using the deflectors as Wien filters, but that is beyond the scope of this note.  The only place dispersion should be a problem is in the separator, which should have its own knobs for this purpose.


Now let us consider the quadrupole terms.  Now, let us assume that there is no dipole term, so that we're using the deflectors purely as stigmators.  Now, we have two focusing powers to set, and there are two elementary actions we can do to the image:  we could change the magnification in the given section (knowing that we'll change it the other way in the other section) or we could change the location of the image plane, that is, stigmate.  We can consider the desired effect as a superposition of both elementary manipulations.


Consider a reference ray which hits the BIP at a position 
[image: image76.wmf]img

r

 and came from the BFP at position 
[image: image77.wmf]r

.  The condition for imaging at the BIP is that the final image position not depend on 
[image: image78.wmf]r

.  The reference ray is therefore given by:
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Now let's suppose that in the section we're considering, we want the magnification to change by a factor of 
[image: image80.wmf]m

 and the image plane to shift an amount 
[image: image81.wmf]L

e

, with 
[image: image82.wmf]e

 a dimensionless relative defocus.  Thus, after propagating through a drift space of 
[image: image83.wmf]xL

, the first deflector, another drift space of 
[image: image84.wmf]()

yxL
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, the second deflector, and finally a drift space of 
[image: image85.wmf](1)
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, we must have a ray which looks like
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where ? represents a 'don-care' element. Thus, the conditions on the two focusing powers are
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On working through the math, we find a unique solution for the focusing powers 
[image: image88.wmf]12

,

pp
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Note that if [image: image90.wmf]1

m

=

 and 
[image: image91.wmf]0

e

=

 the focusing powers vanish, as they should.


Now we know how to adjust the deflectors so that they produce the desired first-order effects in a single section.  What about the full 3D case?  The equations (19)

 and set the chromatic deviation 
 to zero.  We end up with the rather simple forms:
(19)

 for the path change induced by the deflectors are useful for simulation, in which we want to be realistic, but if we want to figure out what to do to get a given effect, we need to approximate.  Therefore, let us take the lowest-order terms in (22)

 apply as-is, but with complex quantities, and they relate the desired beam motion to the parameters 
 of the deflectors, with the assumption that the optical centers of the deflectors remain at the same places as their physical centers, which is only true in first order in the deflector strengths. However, things get more complex when you consider the quadrupole terms.  The full forms (21)

 and 
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The complex deflection angle is [image: image95.wmf]lDl

+

=G

, as expected.  For the second part of the equation,  we can make a rotation:
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which yields
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which shows that we have focusing powers of [image: image98.wmf]()
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 in sections at angles of [image: image99.wmf]1
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Similarly, the "extra" translation implied by the top half of (27)

 is 
. 



Now go back to thinking about a pair of deflectors.  If both deflectors have principal sections defined by the same angle, that is the same phase of [image: image102.wmf]G

, then everything we have done just carries over into the two principal sections at angles [image: image103.wmf]c

±

.  This is probably the mode we want to operate in.  A point to consider is that [image: image104.wmf]G

 has two contributions - the intentionally-applied quadrupole, and a term having to do with the dipole fields.  Thus, in choosing electrode voltages, we must apply a correction for the squared-dipole term in (9)

.  The structure of this equation also suggests that if there is a dipole deflection, then there will be a minimum focusing power possible.  This effect gets worse the shorter the deflector is.  One way to deal with this effect is to run the objective-leg stigmators as pure magnetic deflectors, which don't have a 
-term.  Also, one can consider the effect of the 
-term as the addition of a round-lens component.  We can compensate for a small amount of this by a tiny change in the objective focus voltage.  This will put the image plane back where it belongs, but move the pupil plane slightly.  However, I suspect that motion is small enough so that it will never be noticed.


Do we ever want to have the axes not line up?  In theory, it's possible that a similar effect will happen inside the objective lens if two electrodes are out of position in different directions.  This effect would then have to be corrected for.  This error would in effect cause normal rays to become skew.  It's not obvious at this point how one would see the need for such an effect or how to specify it.   Also, if one wants the distortion correction to be on a different axis than the stigmation, then the deflector axes must differ.  It is not clear to me that for the objective branch, at any rate, that the anisotropic magnification is an important thing to correct as long as one can calibrate it.  Therefore, for this branch, it may be argued that we want to keep the two stigmations at the same angle.


Let's suppose we do want the ability to control the anisotropy and astigmatism on separate sections.  As yet another approximation, we can imagine a pair of stigmators tuned to do only stigmation, superimposed upon another pair, in the same positions, tuned to do only distortion correction.  There will be interactions, but in second order.  Thus, to compute the parameters we need, we have to do this:

1.
Compute the deflections required to move the beam as needed.  This gives us

[image: image107.wmf]1,2

+

G

, which in turn gives [image: image108.wmf]1,2

T

 as well as one of the terms in the expression relating [image: image109.wmf]1,2

G

 to the quadrupole field.

2.
Figure out the magnitude and direction of the astigmatism correction required.

This gives a focusing power [image: image110.wmf]1,21,21,2

||

astigastig

plG

=

 and the argument of [image: image111.wmf]1,2

astig

G

.

3.
Similarly, work out the magnitude and direction of the anisotropic magnification

correction required, to get [image: image112.wmf]1,21,21,2

||

magmag

plG

=

 and its argument.

4.
Add together to get the total [image: image113.wmf]1,2

G

, which can be converted into quadrupole

strengths.

5.
The lens action of the second element changes the effect of the deflection from

the first by introducing an extra kick [image: image114.wmf]2

122121
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 where [image: image115.wmf]12

L

 is the distance between deflectors.  Compensate for this by changing [image: image116.wmf]2

D

 by the appropriate amount.

6.
The round-lens action of the deflectors, described by focusing power 
[image: image117.wmf]1,21,2

plT
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needs to be compensated for by a tiny adjustment of the objective to keep to the same focus.  To lowest order, extra focusing power needed for the objective is given by
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where 
[image: image119.wmf]obj

M

is magnification of the objective.  The above equation can be derived by ignoring all deflector effects except the round-lens terms and asking that rays which had focused to the axis still do so after turning on the deflectors.


All the above neglected the hexapole correction.  As a first guess, I assume that we can think of it as stigmation, but with a different symmetry and radial dependence.  Instead of a defocus, i.e. a longitudinal shift of the focal plane, we have a tilt of the focal plane if we look only in one section.  Since there is 3-fold symmetry, the focal plane cannot be planar anymore, but is instead a surface which bulges downstream in three directions and upstream in the other three, as in the 
[image: image120.wmf]3

l

=

 mode of a circular drumhead.  In addition, we have anisotropic coma, which may be what we wanted to correct, as well as anisotropic magnification.  A further complication is that the hexapole effect is nonlinear, and it may be that the deflection induced by the dipole component is larger than the beam size.  In that case, one might think that the hexapole contributions should be computed with the beam bent by the dipoles.  However, that ignores the reason for using the dipole deflectors in the first place.  Usually, the reason is not to move the beam off-center, but to bring it back on-center, compensating for kicks due to imperfect fabrication or stray DC fields.  Therefore, we have an argument for doing the simple thing and computing the hexapole effects without considering the dipole component.


Therefore, let us consider a reference ray which intersects the BIP at a position [image: image121.wmf]img

r

 and the BFP at a position [image: image122.wmf]r

, both for now along the [image: image123.wmf]x

-axis.  Now, if we apply hexapoles, we find that the shift of the rays to lowest order in the tilt and hexapole strengths is quadratic in [image: image124.wmf],

img

rr

:


[image: image125.wmf]22

()

imgimgimg

xLrCrdrrr

=+++D


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (31)

where [image: image126.wmf]C

 is a measure of the induced coma, [image: image127.wmf]d

 is a defocus, and [image: image128.wmf]D

 is a measure of the distortion.  If we now compute the image position in a plane tilted by an angle [image: image129.wmf]t

, with the sign convention that positive [image: image130.wmf]t

 means that the plane goes downstream for [image: image131.wmf]0

img

r
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, we add a term [image: image132.wmf]()
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img
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 to the expression (31)

.  Now, we want to set 
so that we have a given amount of tilt and coma, letting the distortion go where it will.  With a bit of help from Mathematica, we find that the image point is
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so that if we want the middle term to vanish and the coma term to take on a given magnitude, we need to set
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which leads to an anisotropic magnification (not counting the foreshortening due to the focal-plane tilt) of
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As with the previous development for the quadrupoles, it seems to me that we could generalize to the 3D case by making 
[image: image137.wmf],

tC

 into complex quantities, which yields complex quantities, not necessarily with the same argument, for 
[image: image138.wmf]12

,

CC

.  Thus, we have a new step in the procedure for adjusting the deflector elements:

6.
Compute the focal-plane deformation 
[image: image139.wmf]t

 and coma 
[image: image140.wmf]C

 required to bring the system


into focus and set the complex hexapole powers 
[image: image141.wmf]12

,

CC

 according to (33)

.

V.
Double deflector - mirror leg


The double electromagnetic deflector in the mirror leg is especially tricky because it has to control the path of the beam going in and coming out.  To first order, these processes can be made independent.  There is a contribution to the effective quadrupole field in both directions due to the electric dipole field.  This effect is small and can be handled iteratively.  The real problem is deciding what to control.  For the dipole (deflection) fields,  one possibility is as follows:

Inbound leg: Control the position and direction of the beam as it hits the mirror

Outbound leg: Control the position and direction of the beam as it comes back to the separator.

As a further refinement, we could make the outbound deflector take into account the mirror and inbound deflection, so that if you move the inbound beam, the beam stays put on the separator but moves on the mirror.  To do this, you have to assume that the mirror is perfect and perfectly characterized.  You have it right when you can wobble the mirror and the image doesn't move, and you can wobble the field lens at the mirror leg and the image doesn't move.


What about the quadrupole actions?  At this point, I don't really know!  The same idea of decomposing the effect into distortion and astigmatism might still hold good.  The hexapole is even worse.  In this case, it may be as important to null out the anisotropic distortion as it is to get rid of the three-fold coma.
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