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X is a Hilbert space
with inner product (-,:) and norm ||z|| = \/(z, z).

Example. X is some function space L2.




Given: closed sets (“‘constraints”)
Cq1,Co,...,CN.
Wanted: a point (“solution”)
zreCinNnCn:---NCx

of the Feasibility Problem.

Example. The Phase Retrieval Problem arises
when X = L2, N = 2, and the two constraints
are as follows.
“space-limited image": for some set S,

C, = {m € L? : z is zero outside S};

“known Fourier magnitude”: for some func-
tion M(w),

Cr={zel?: 3(w)|=Mw), Yw}.

C1 is convex, but Cs is not convex!

intersection of constraints

constraint 2

constraint 1

The Feasibility Problem for N = 2.

Definition. A set is called convex, if the line
segment between any two points of the set lies
entirely in the set.

Three convex sets.




A set that is not convex.

2. Fundamental results]
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Phase Retrieval Problem revisited.

This problem is particularly difficult as it is
a Feasibility Problem where one of the con-
straints — “known Fourier magnitude” — is
not convex.

Here, I will focus on projection algorithms for
solving convex feasibility problems. These meth-
ods can be viewed as ‘“easier” variants of the
Gerchberg-Saxton algorithm, and thus their con-
vergence properties

e may suggest new approaches;
e adjust expectations for Gerchberg-Saxton.
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(The Convex Feasibility Problem]

Given: closed convex sets (‘“constraints”)
C1,Co,...,Cn.
Wanted: a point (“solution™)
zeCiNCN---NCxN

of the Convex Feasibility Problem.
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constraint 1

intersection of constraints

constraint 2

constraint 3

The Convex Feasibility Problem.
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X 2
constraint 1
x_ 4 x_1
constraint 2
constraint 3 starting point x_0

The method of cyclic projections.
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(The method of cyclic projections)

e P;: (orthogonal) projection onto ith set C;.
e zg: starting point of the algorithm.

e (zn): sequence of cyclic projections given by

P P
o I—1> I l—2> ) I—3> I—N) N
Py P P3 Py,
? ITN41 ? ITN42 ? > TON
P P

1 2
— ION41 —
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Some examples.

e each C; is a hyperplane ~ Ax = b;

e hyperplanes and orthant ~» Az = b,z > 0;

e functions that are band-limited and known
on a segment ~» Signal Recovery.

Some applications.

Large-scale linear systems;

Medical Imaging;

Filter design;

Enhancement of blocky JPEG images.
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Phase Retrieval Problem revisited.

The Gerchberg-Saxton algorithm can be viewed
as a method of cyclic projections for the two
constraints.
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3. Recent developments|
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“Fundamental Theorem” Bregman (1965).
Suppose the problem is consistent, i.e.,

S:=CinCrnN---NCx # 0.

Then (zy) converges weakly to a point in S.

e Hundal (2000): norm convergence can fail;
e von Neumann (1933) and Halperin (1962):
norm convergence for subspaces;

e Gubin et al (1967): linear convergence in
presence of “regularity”;

e Youla, Stark (around 1980) popularized, ap-
plied and extended this to image restoration
problems.
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(Unifying frameworks)

Rather than studying cyclic projections, con-
sider a much more flexibe general projection
algorithm: starting point zg; for n > 0, update
via

Tn4+1 = Tn + anpn Z wi,n(lji,nxn — zp).

(2
relaxation parameter ay, € [0, 2].
extrapolation parameter pp, > 1.
weights w; , > 0, > w; pn = 1.
P; , projection onto superset of C;.
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The general projection algorithm covers ...

@ the method of cyclic projections;

@ serial versions (under/over relaxations);

@ random projections;

@ parallel and block versions (e.g. Cimmino);
@ subgradient algorithms.

Many earlier results are covered by recent uni-
fying work (B&Borwein, Censor, Kiwiel, ... ).

Phase Retrieval Problem revisited.

If PRP were convex, then this framework would
include the Fienup variant of Gerchberg-Saxton.
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Pioneering work by Merzlyakov (1963), by Com-
bettes (mid 1990s), and by Kiwiel and Lopuch
(mid 1990s) introduced extrapolation. The
next iterate z,, 1 is chosen from a cone, which
may already contain the solution:

solution
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Extrapolation

Most projection methods had no extrapolation
parameter pp.

Given current zp, the update z,,4 1 was chosen
from “small” polytope (green triangle):

current

solution

—=
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Compared to more traditional methods,

projection algorithms with extrapolation

have the potential to converge

dramatically faster,

as demonstrated recently by Combettes. This
feature is inherently parallel.
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The relationship among the constraints (“ge-
ometry of the problem”) is responsible for how
fast the method of cyclic projection converges.

Example. (subspaces with small angle)

W

Small “angle” yields slow convergence:
“tunnels”.
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Example. (only “touching” is bad)

Mere touching yields slow convergence:

“tunnels”.
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Fact. (B-Borwein-Lewis, 1996). Suppose each
C; is a subspace and S =C1NCy---NCy. De-
fine the angle v(Cq,...,Cy) € [0,7/2] by

cosy =||Py---P1 — Pgl|.
Then

|zxn — Pszol| < (cosy)F,  Vk.

@ cosvy < 1 in finite dimensions;
@ cosvy < 1 for hyperplanes;
© cosy =1 and slow convergence is possible.
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Fact. (Gubin-Polyak-Raik, 1967). If

N-1
CynN ﬂ int (C;) # 0,
i=1

then we have linear convergence:

there exists 0 <A< landse CiNCrN---

such that

41 = sll < Ollzn —sll,  Vn.

NCx
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Definition. (B-Borwein, 1992) The constraints
C1,...,Cn with intersection S=C1nN---NCx
are regular, if for every bounded set B, there
exists k > 0 such that
d(z,S) < kmaxd(z,C;), Vz € B.
K2

“If you are close to each constraint, then the
intersection cannot be to far away.”
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Fact.

If the constraints are regular, then the method
of cyclic projections — and more general vari-
ants — produces a sequence (zp) that con-
verges linearly to some solution.

This unifies and extends many earlier results
on linearly convergent projection methods in-
volving:

e subspaces;

e interiority assumptions;

e polyhedral sets.
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(Projections: existence and uniqueness)

Fact. Suppose C is closed and convex, and
z € X. Then there exists a unique point in C,
denoted Pp(xz) and called the projection of z
onto C, that satisfies:

Iz ~ Po(@)l| = d(z,0) = min = ~ |

Phase Retrieval Problem revisited.

The “known Fourier magnitude” constraint is
not convex. Projections are set-valued. The
projection given in the G-S algorithm well-
defines one particular selection of the pro-
jection. For this and new approaches to the
PRP (perturbed Least Squares), see the recent
preprint by Luke-Burke-Lyon (2001).
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[Convex projections are firmly nonexpansive]

Fact. Suppose C is closed and convex. Then
Pg is firmly nonexpansive: for all z,y € X,

Iz =yl > || Po(=) — Po()||?
+I(I = Po) (=) — (I - Po)(®)|%.
Hence P is nonexpansive or “Lipschitz-1",
l1Po(z) — Po(Il < |lz —yll, Vz,y€X,

and thus continuous.
Phase Retrieval Problem revisited.

Continuity of the G-S projection is false.
May make G-S sensitive to numerical errors?
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(Fejér monotonicity and projection methods|

e all general projection methods are Fejér
monotone with respect to S = C1N---NCy.

e design of extrapolation parameters is guided
by Fejér monotonicity.

Phase Retrieval Problem revisited.
The Fienup measure, see also Levi&Stark,

A(z) = d(z, C1) +d(z, Cp)

is decreasing: A(zp41) < A(zn), Vn.
This fails for N > 3, even in the convex case!
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[Fejér monotone sequences: basic propertiesj

Definition. Suppose C is closed and convex,
and (zp) is a sequence. Then (zp) is Fejér
monotone with respect to C, if

lznt1—cll < llzn—cll, Va>0,cec.

e (zp) is bounded, and d(zn,C) decreases.

e (zn) converges weakly to some point in C
& all weak cluster points of (zp) lie in C.

e (zp) converges in norm to some point in C
& d(zn,C) — 0.
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(Remaining tools are ... convex ... |

e Convex Relations Theory from Functional/Set-
Valued Analysis (for regularity).

e Fixed Point Theory of nonexpansive maps
— fixed point sets are convex.

e maximimal monotone operators (for incon-
sistent constraints): projection Pg onto a
closed set C is always monotone:

(Po(x) — Po(y),z —y) >0, Va,y;

Pp is "maximal monotone” & C is convex.
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5. Open problems|
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@ In Medical Imaging, random methods yield
faster convergence than cyclic methods;

@ known convergence results rely on interiority,
regularity, or combinatorial arguments.

© weak convergence in general open;
© norm convergence open for subspaces.
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Suppose N > 3, and let
r:N—{1,2,... ,N}

be a random map (an “N-die"), i.e., r is onto
and takes up every value infinitely often.

When and in what sense does the sequence

In .= Pr(n)(mn—l)

converge to a pointin CyN...NCxN7
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(Inconsistent constraints)

What happens if we apply cyclic projections,
but there is no solution?

constraint 2

constraint 1

constraint 3

40




(The inconsistent case for N = 2]

For clarity, write: A and B for the constraints,
bg for the starting point in X, and

P, P, P, P,
bO»Aall—B>b1|4a2b—B>---

for the sequence of alternating projections.

Fact. Define the displacement vector by

v = PC| (B—A)(O)’
and let E:=An(B—v) and F:= Bn(A+w).
Then E = Fix (P4Pg) and F = Fix (PgP,).
If e € E, then Pg(e) = Pr(e) = e+ v.
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Fact. We always have

bn — an,bn — ap 41 —> 0.

Also, we have the following Dichotomy.
Either: E and F are both nonempty and

w w
an—e, bpn—f=e+w,

for somee€ E and f € F.
Or: E and F are both empty and

llanll; ||bn]l — +oo.

a3

The inconsistent case N = 2.
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starting point

Dichotomy: the “Either” case.
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B:={x>0andy>=1+1x}

starting point

A ={y=0}

Dichotomy: the “Or” case.
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constraint 1 constraint 2
constraint 3

A cycle.

a7

(The inconsistent case N > 3]

WLOG N =3. (f1,f2,f3) €C1 xCo xC3is a
cycle, if
s o D gy
Set
Fy = Fix (P1P3P2),
F2 1= Fix (P2P1P3),
F3 = Fix (P3P2P1).
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Cycles are order dependent.

a8




Fact. (Dichotomy)

Either: each Fj; is nonempty,

(T3n4+1> T3n+2 T3n+3) ~ (f1, f2, f3)
for some cycle (f1, fo, f3), and

T3p+it1 — T3n+4i — di
for some difference vectors d; independent of
the cycle.

Or: each F; is empty, and ||zn|| = +oo.

Open problem: what are those vectors d;?
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(Underrelaxations)

What if, in the method of cyclic projections,
we replace at every step the projection P; by a
more general underrelaxed projection

(1 =N+ P,
for some fixed X € (0,1]?

Remark. This is similar to the Fienup variant.
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Fact. (B, 2001). The composition
T:=PxPy_1---P;
is asymptotically regular, i.e.,

Thy — Th+1y 0, VzxelX.

Remark. In the language of Levi&Stark, “traps”
or “tunnels” always exist.
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Fact. (Censor-Eggermont-Gordon; 1983)
If each C; is an affine subspace, then:

e the sequence (aan+1,... ,mNn+N) converges
in norm to some (ml()\),... ,xN()\)).

e as A — 01, the net (931()\),... ,mN(A)) con-

verges to (¢,...,£) € XN, where £ is a least-
squares solution of the optimization problem

N
min 3" d2(z, C,).
ex Z;]_ (:E, 7,)
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De Pierro's Conjecture.

This is essentially true for the non-affine case
as well, although least-squares solutions may
not exist.

Remark. Chris Hamilton, a recent graduate

from OUC, has written nice Java code that
gives further support to De Pierro’s conjecture.
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