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THE SIGNAL RECOVERY PROBLEM

A signal x is to be estimated from data y and some a priori
knowledge:

e Image restoration: y € H is a blurred and noise corrupted
version of .

e Image reconstruction: y is a collection of signals related to
x.

Four basic elements are required to solve this problem:

1. A data formation model, i.e., a mathematical description of
the relation between the original image x and the recorded
data y. For instance,

y = Lx + u.

2. Some a priori information about the original signal z, the
noise sources, etc.

3. A recovery criterion defining the solutions to the problem.

4. A solution method, i.e., a numerical algorithm that will pro-
duce an image that satisfies the recovery criterion.



MATHEMATICAL SET-UP

e The original signal lies in a real Hilbert space ‘H with

— scalar product (- | -)
—norm || - ||

— distance d.

o Typically, H is (a subspace of) £*(), A, it). In particular:

— H = L*(RM) for M-dimensional analog signals.
— H = 2(ZM) for M-dimensional discrete-space signals.

—H = (RV)M for discrete-space, finite-extent signals.

e The a priori knowledge and the data give rise to a family of
constraints (W, );c; associated with the property sets

(Vie I) S;={x € M|z satisfies U }.

e The feasibility set is

S:ﬂ&.

1€1



MATHEMATICAL SET-UP (cont’d)

e The recovery problem can be posed as a minimization prob-
lem:

Find z € S such that f(x) = inf f(5),

where f : H — |—00,+00] is an optimality criterion.

e In many cases f cannot be determined objectively and is
constant. The problem is then a feasibility problem:

Find x € S.



MATHEMATICAL SET-UP (cont’d)

e The Fourier transform of = € H is denoted by .
— In L3}RM),
z: RM - C

2 x(t) exp(—i2mv - t)dt.

RM
—In H = 2(ZM),
z: [-1/2,1/2[M
% —> Zaz n)exp(—i2mr - n).
nezZM
—In H = (R")M, we obtain the DFT
z: N = C
k — Zaz(n) exp —zz—wk n
neN N |

where N = {0,..., N — 1}¥.



SIGNAL RECOVERY WITH FOURIER INFORMATION

Pieces of information that may be available about 7 (A C R¥):

e Support: 14 = 0 (closed vector subspace)

o Moments: [sZT =1, eg., s: v — ||
(closed affine hyperplane)

e Positivity: 714 > 0
(closed convex cone)

e Phase: 714 = |Z|exp(ip)l4, ¢ prescribed
(closed convex cone)

e Bounded energy: ||714])* <7
(closed ball)

o Bounded residual energy: |7 — (Z||> < 7
(closed convex set)

o Upper modulus envelope: |Z|14 < ml4, m prescribed
(closed convex set)

e Modulus envelope : nls < |z|14 < mla, m,n prescribed
(nonconvex set, unless m14 = 0)

e Modulus : |Z|14 = mly4, m prescribed
(nonconvex set)



IMPORTANCE OF PHASE INFORMATION

o . ¥/

Clockwise from upper left: z, v, .7:_1(|§:\| exp(i£ /y\))
and F1(|y|exp(iL T)).



NONCONVEXITY OF THE MODULUS CONSTRAINT |1

Im Z(v)

Re Z(v)

1-D analog representation of the constraint || = m.



NONCONVEXITY OF THE MODULUS CONSTRAINT Il

(1)

2-point DFT representation of the constraint |z| =

|2(0) + 2(1)] = [2(0)] = m(0)
|2(0) = z(1)] = [2(1)] = m(1).

The feasibility set consists of 4 isolated points.



CONVEXIFICATION OF THE MODULUS CONSTRAINT

e A number of efficient algorithms are available to solve con-
vex minimization and feasibility problems.

e Can the phase retrieval problem be convexified in order to
take advantage of these tools?

e We describe three convexification approaches.
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CONVEXITY OF THE MODULUS CONSTRAINT |

e Instead of working with z itself, work with its autocorrelation
Pow =T KT .
e The spectral density of = is S,, = 7., = |7]°.
e In the autocorrelation space, the nonconvex modulus con-
straint
|§3\‘1A = mlA
therefore becomes a convex (actually affine) constraint
Toala = m1y
and its carries implicitly the conical convex constraint

Tz 2> 0.

e Conceptually, a solution can be obtained as follows:

— If other relevant constraints on the signal yield convex
constraints in the autocorrelation space, solve the result-
ing convex problem and obtain r,,.

— Use spectral factorization to construct = from 7, (pos-
sible only in certain 1-D problems in general).

11



CONVEXITY OF THE MODULUS CONSTRAINT Il

o A subset S; of a real vector space (E,H,[]) is convex if

(Vo €10,1))(V(z,y) € S7) (aBz)B((1—a)y) € S;.

o Let / be the subset of ¢! of discrete-time 1-D signals whose
Fourier transform is nonzero a.e.

e Define

rHBHy=zxy
Va € R)(V(x,y) € £x/
(Vor € R)(¥(z, 9) ) {04 Dz =F exp(aln(z))).
e Fact: (/,H,[]) is a vector space.

e It was observed by Cetin that the modulus constraint set
S; = {x cl||z|la = mlA}
is convex in (¢, H, []).
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CONVEXITY OF THE MODULUS CONSTRAINT Il (cont'd)

e The scalar product between two signals = and y in £ can be
defined as

1/2
(e | y) = / In(Z()) G ) dv.

1/2

e In some problems, other useful constraints may be convex
in £ and one can therefore solve the phase retrieval problem
in a convex optimization framework.

e Unfortunately, many useful constraints which are convex in
/* are no longer convex in /.
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CONVEXITY OF THE SUBMODULUS CONSTRAINT I

Q: How much is lost by replacing the nonconvex set
S; = {37 eH | |§7\‘1A = mlA}
by its convex hull, i.e., the convex set

S; = {.’E cH ‘ |§7\|1A SmlA}?

14



CONVEXITY OF THE SUBMODULUS CONSTRAINT
(cont'd)

A: No general answer but:

e If the only nonconvex constraint is the modulus constraint,
an approximate solution should be sought via a convexity
algorithm with the submodulus set.

e By projecting this solution onto the exact modulus set, one
can measure a ‘feasibility gap” and assess whether further
processing IS necessary.

e The above convexification approach is quite common in sig-
nal feasibility problems. For instance, with the linear model

y=Lr+Db
the nonconvex exact residual variance set
So={ereH|n-<|Le—yl* <n}
iIs replaced by its convex hull

Sy =1z € H||Le —ylI* <y}

e This approach gives satisfactory results if the remaining con-
straints are discriminating enough.
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FEASIBILITY IN THE SIGNAL SPACE




FEASIBILITY IN THE PRODUCT SPACE

e Suppose we have m constraints and define the m-fold carte-
sian product space H = H"™

o Take weights (w;)1<j<m in ]0,1] such that > " w; = 1.

e H is a Hilbert space with norm

m
-1 (s ) = \ > willl®
i=1

e In H, define the cartesian product of the constraint sets
S=5,x---%x5,
and the diagonal subspace

D= {(z,...,2) |z €H}.
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FEASIBILITY IN THE PRODUCT SPACE (cont’d)

e The 1m-set feasibility problem in H

Findz € S = ﬂsi
1=1

is equivalent to the 2-set feasibility problem in H
Findx € SN D.
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METRIC PROJECTIONS

e Let S; be a closed set

e The projector onto S; is the set-valued mapping

0 2o {p e S| |z pll = inf ||x—y|\}
yeS;

e The set I1;(x) of projections of x onto S;

— is closed and bounded
— may possibly empty in infinite dimension

— may contain more than one point

e Almost uniqueness of projections: the set of points which
have more then one projection onto a set is “negligible”
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PROJECTION ONTO THE FOURIER MODULUS SET
S; = {33 S L? | ‘53\|1A — mlA}

e .S; is neither convex nor weakly closed.

o Every signal z € L? has at least one projection onto S;
which is defined by (see p. 8)

pi=Tlpy +mexp(i£2)1 4 g + mexp(ip)lp,

where B C Aissuchthatzlp = 0a.e. and p: B — [0, 27|
is any (measurable) function.

e The projection is unique if mlg = 0 a.e., in particular if
Tl4 #0 a.e.

Remark: If A = R and x has compact support, then T # 0
a.e. (the Fourier zeros of a compactly supported function are
isolated). Hence, in the Gerchberg-Saxton algorithm, projec-
tions are always unique since support truncation precedes the
projection onto 9;.
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METHOD OF SUCCESSIVE PROJECTIONS (MOSP)

e MOSP consists in projecting sequentially an initial estimate
onto the sets in a cyclic manner.

e |t is described by the recursion

(VTL c N) Tn+1 € Hn (mod m)+1<xn)7

where 1I; is the projector onto .5;.

e In the convex case, MOSP coincides with POCS (projection
onto convex sets).

e MOSP converges locally (PLC & Trussell, 1990)
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PARALLEL PROJECTIONS METHOD (PPM)

o Apply MOSP with the 2 sets of the product space H (p. 18).

e The algorithm is therefore defined by the set-valued recur-
sion

Tnt1 € {szpi | (VZ - [) D; € HZ(CL’H)} .

el
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PPM ALGORITHM IN THE PRODUCT SPACE
(CONVEX CASE)
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PPM ALGORITHM IN THE ORIGINAL SPACE
(CONVEX CASE)
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CONVERGENCE OF PPM: THE CONVEX CASE

e Assume that, in addition to the above conditions, the sets
are convex.

e The recursion becomes
(\V/TL c N) Tntl = ZwZPZ(:L'n)
1€1

e Define

o Let G be the set of global minimizers of & (the approxi-
mate feasible solutions when the set theoretic formulation is
inconsistent).

olf SEQ, thenG=S={xeH|d(x)=0}

e Suppose that one of the sets is bounded. Then G # @ and
every sequence (,),>o generated by PPM converges weakly
to a point in (5.
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CONVERGENCE OF PPM: THE GENERAL CASE

e Assume that all the S;'s are boundedly weakly compact and
that one of them is weakly compact.

o PPM z,, 1 € I'(z,,) where I' = ) ., w;ll;.
e Definitions:

— L is the set of local minimizers of @
—F={xeH|{x} CTI'(z)} the fixed points set of [
—T={x € H|{x} =T(x)} the stationary points of I

— C'is the set of all cluster points of all (x,,),>q of T".
eResult: SCGCLCTCF=CH#.

e In practice, this result can be strengthened by noting that
(F\ S)b is dense in . Thus,
— Almost every fixed point is a stationary point.

— Any cluster point is a local minimum, and constitutes a
local approximate solution to the feasibility problem.

—If S # @ and zg lies in a suitable region of attraction,
every cluster point of an orbit (z,,),>¢ is feasible.
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BREGMAN PROJECTIONS

e In the above algorithms, the difference between two signals
z and y is measured by D(z,y) = ||z — y||*/2.

o Let f: H — |—00,+00] be a convex, differentiable func-
tion.

e The Bregman “distance” between x and y is
D(z,y) = f(z) = fly) = (z —y [ V[(y)).
o For f = || -||?/2, one recovers D(z,y) = ||z — y||*/2.

o In RY if f is Shannon’s negentropy,

§ 1L nr Txr -~
J (x(l))1<i§N { -

+00 otherwise,
one obtains the Kullback-Leibler divergence between x > 0
and y > 0,
N N N

Diz,y) =3 a@mn (205 0) = 320 4 5740

1=1 1=1 1=1
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BREGMAN PROJECTIONS (cont’d)

e Potentially, the standard projections in the previous algo-
rithms can be replaced by Bregman projections: p; is a Breg-
man projection of x onto §; if

D(pi,z) = inf D(y,z)
YEeS;

e Bregman projections have not yet been used in nonconvex
problems. In some convex medical imaging problems they
have been reported to be better than standard methods.

e An orbit generated by Bregman projections follows a very
different path than one generated via classical projections.

28



