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Abstract

This work details the theory of projection techniques for numerical optical wave-
front reconstruction. Computational wavefront reconstruction algorithms have been
successfully applied for many years, however most of the fundamental mathematical
questions about the behavior and properties of these algorithms remain open, in partic-
ular questions regarding existence, uniqueness and convergence. The theoretical results
often cited for these algorithms do not apply to the problem of phase retrieval since
the required hypotheses are not satisfied.

We briefly review an analysis of the central theoretical difficulties of the phase
retrieval problem. We then propose techniques for avoiding numerical instabilities
resulting from theoretical pathologies. In addition, we introduce a novel method for
accelerating convergence with a technique we call extended least squares. Our results
are compared to the performance of similar projection algorithms.



Optical wavefront reconstruction algorithms have been employed in crystallography, mi-
croscopy and optical design for three decades. Among the first of such algorithms is the
celebrated Gerchberg-Saxton algorithm [8]. Since the introduction of the Gerchberg-Saxton
algorithm numerous variations have been studied [1,6,7,12,13,16-19,21,22]. Projection algo-
rithms in convex settings have been well understood since the early 1960’s [4,9,10,20,23,24].
The phase retrieval problem, however, involves nonconvex sets. For this reason, the con-
vergence properties of the Gerchberg-Saxton algorithm and its variants are not completely
understood. In 1981 Hayes [11] showed that the solution to the two dimensional phase re-
trieval problem for a single band-limited image, if it exists, is almost surely unique up to
rotations and linear shifts. While this result is of fundamental importance, it does not apply
to many of the algorithms used for phase retrieval. For example, a projection technique
proposed in 1973 by Misell [17] applies projections onto several images in a cyclic manner in
order to find the wavefront aberration common to all the images. It is shown in [15] that in
many practical situations, in particular in the presence of noise, the underlying problem that
this and similar algorithms [6] attempt to solve has no solution. Thus, while the uniqueness
result of Hayes remains valid for bandlimited signals, it says nothing about the uniqueness of
approximate solutions in the event that a true solution does not exist, that is when the feasi-
ble set is empty. In the convex setting, when the constraint sets onto which the projections
are computed do not intersect, convergence of projection algorithms is an open question [5].
Much less is known about the nonconvex setting.

The similarity between projection algorithms and line search methods applied to a par-
ticular error metric has been known for some time [3,6,8]. A precise analysis of this corre-
spondence, however, has proven elusive. In 1985 Barakat and Newsam [2, 3] developed an
approach modeled on the projection theory for convex sets. A well known fact from convex
analysis is that the gradient of the squared distance to a convex set is equivalent to the
direction toward the projection onto the set. To extend this property to the nonconvex sets,
Barakat and Newsam require the projection operators to be single-valued, however there is
no known example of a nonconvex set for which the projection operator is single-valued.
Indeed, we show that the projections in the case of phase retrieval are multi-valued and that
the squared set distance is not differentiable in the classical sense. The source of the diffi-
culty is the nonconvexity of the underlying sets and the nonsmoothness of the error metric.
The precise relationship between the projections onto image constraints and subdifferentials
of the corresponding nonsmooth distance metric are detailed in [14]. The numerical phe-
nomenon of stagnation that is commonly observed with projection-type algorithms can be
associated with the multi-valuedness of the projection. Extensions to projection algorithms
have been proposed to overcome stagnation [6]. These methods seem to be very robust and
efficient in practice [21]. Their success warrants precise mathematical analysis which has yet
to be done.

In our approach the subtleties of subdifferentials are avoided with the use of a smooth
perturbation of the error metric. We compare the numerical performance of projection
algorithms to standard line search algorithms applied to a perturbed least squares error
metric. In addition, we investigate a novel approach which we call extended least squares,
together with limited memory and trust region techniques for stabilizing and accelerating
first-order analytic algorithms. The objective associated with the extended least squares



technique includes a regularization term and allows us to adaptively correct for the relative
variability in image data. The extended least squares approach has great potential for future
research. In our implementations we chose the simplest possible regularizing functional in the
objective, i.e. a constant. Even this simple choice had a dramatic effect on the performance
of the algorithms. This opens the door to a search for optimal regularization. There are
two different ways to interpret the extended least squares regularization term, the first and
perhaps most natural is statistical, the second is purely algorithmic. Under the statistical
interpretation, the regularization term is viewed as the variance or spatial correlation of the
data sets. The method is very general and applies to a wide variety of observations and
statistical models. Under the algorithmic interpretation, the regularizing term is simply a
merit function and can be used to tackle the problem of algorithm stagnation in the middle
iterations. The adaptive weighting strategy allows one to include several different metrics in
the same objective, one that is more effective for the middle regions and one that is more
effective near a local solution.



Mathematical Essentials

o [lectromagnetic field:

w = (Upe, Uin) € L*[R? R] x L*[R* R]

e Object:
¥ S LQ[R27 R+]

e Data:
Field intensities for m = 0,1,2,..., M:

¢m = Ll[R27R+] A LQ[R27R+] A LOO[R27R+]

e Goal:
Find a field w and object ¢ satistying

where F,, : L*[R? R? — L?R? R? is a unitary

linear operator



An Optimization Approach

M
minimize Z P [ Wms | Fnw]| * ¢ |

m=0
over u € L*[R* R?| x L*R* R?|
¥ S L2 :R27 R+]

where p,,, m = 0,1,2,... are given measures of
performance.

Wavefront reconstruction (aka Phase retrieval)

=20

Wavefront reconstruction/deconvolution

© unknown



Geometric Approaches

[Brégman, 65], [Gubin&Polyack, 67], [Gerchberg&Saxton, 72],

[Misell, 73], [Fienup, 82], [Levi&Stark, 84] [Combettes, 90],
[Bauschke&Borwein,96]




Geometric Approaches

Tube constraints. The vertical axis and the axis coming out of the page correspond to the real
and imaginary components of the tubes. The horizontal axes correspond to the horizontal
axes of the previous slide. Frame (a) represents the constraint set corresponding to frame

(a) of the previous slide. Frames (b)-(d) represent the constraint sets corresponding to frame
(b)-(d) of the previous slide.



Geometric Analysis

Given 1, Z 0, define

Qn = {u € L’[R*R?] | |Fulul| = ¥, a.e.}

Property: The sets QQ,,, are neither weakly closed nor
convex in L*[R?, R?| whenever 1), is not identically zero.



Geometric Analysis

e Distance Function:

dist (z; Q) = inf ||z — ul|
ueQ

where Q is a subset of some normed space X.

e Projection Operator:

11 — _
olv] = argmin v —u]

= {2 €Q:lv—al = inf fv—ul}

o Tubes:

Given b € L?[R? R,] with b # 0.

={uec L’R* R’ | |u|=b ae.}



Geometric Analysis

Define
[T[w; b] = {m|u;b, 0] | @ measurable}
where
( u\xr
b(aw) for u(z) # 0
mlu; b, 0](x) = <

Projection Theorem
For b € L*[R* R, | and u € L*[R? R?,

o v c llu; b —
lv(x) — u(x)| = dist (u(x); b(x)S) a.e.
o llgp|u] = l[u; b, and

o dist (u; Q[b]) = || |u| — 0]
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Geometric Analysis

Recall
Qn = {u € PRLEY || Fulul] = ¥, ac.}

Rewrite as

Corollary

Mo, [u] = Fp, [Mapg,[Fnlul]]
and

dist (w; Qy) = || | Frn|wa]| — |

for all u € L*[R? R

11



Projection Algorithms

o General Projection algorithms:

2RV (Z —c [ (1—al (v) VT + o )HQm:|> [u(”)]

where
o) >0, m=0,1,2,... (usually oY) e [0, 2])
and

A >0, m=0,1,2,... with 3 A =1

e [terative transform algorithms:

ultY ¢ (ﬁ [(1 —a"HT 4+ ol )HQm}> u™)].

m=0

Gerchberg-Saxton: M =1, oz(()y) = oz%y) = 1.
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Projection Algorithms

Change of variables

yields
wv+D ¢ (z— )\(V)g(V)) )]
where
M
GV= > gV wu
m=0
with

(Note that Z%:O @(ﬁ ) =# 1 in general and
A is a step length)
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Analytic Methods: the squared distance
function

e Squared set distance error

M
Z T dist 2(w; Q)
where
Bn=>0 m=0,...,M
and

distQ(’u,; Q) = ||| Fnlu]| — me2

e Nonsmooth least squares minimization:

minimize F|u)]

over  u € L*[R? R? x L*[R* RY.
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Analytic Methods: subdifferentials and
projections

e First-order variational principle:

0 € OF|u,.

where 0 denotes a subgradient operator

e Relation to projections:

0 (dist *(u; Qpy)) = 2c1* (T — Ilg,,) [u]

o Subdifferential Calculus:

OE[u] C Y BV " (T —g,,) [u].
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Analytic Methods: perturbed least squares

Perturbed squared set distance error:

EE[’UI] _ Z ﬁm |fm[u]|2 5 — wm
=0 | (1l + @) /

Define r : R? x R, — R

r(w: b, €) [uf b (~ |u| — b)
; 76 T ~ T
(Juf2 + €2)'?
and J : L*R? R? — R
Ju;b, el = | r*(u(z);b(x),c)dx
R2

Then

16



Analytic Methods: properties of the
perturbed squared set distance error

Theorem
For all € # 0 and b € L' N L? N L™ nonnegative

o J|- b, ¢ is finite-valued,
e J|- b, €| is Fréchet differentiable,

o VJ| b, €| is globally Lipschitz continuous.

Corollary

E. is finite-valued, and Fréchet differentiable with
globally Lipschitz continuous derivative

17



Analytic Methods: properties of perturbed
squared set distance error

Gradients:

VE |u| =

> B [ Fnle); by, €)' [Fonla]; 0, € Fo ]

where
\fm[uH? + 2¢?
(| Frlaa]2 + €2)*/7

P Fmlul; v, € =

18



Analytic Methods: the perturbed squared set
distance error and projections

Theorem
If Flu] < 0, there exists an € > 0 such that

IVEJu] — v|| < C§'Y?

for all v € Glu| where

M
G= > 0u(T—Tg,)
m=0
and

M
C=vay g (1+vapl?)
m=0

19



Analytic Methods: extended least squares
[Bell et al, 96]

o [ixtended least squares objective:

LE[U’HB] —
> —n(2mBn) + B (J[Fnltt]; ¥, €] + Grilua])

e Optimization problem:

minimize L|u, G]
over u € L[R* R?, 0<p

20



Analytic Methods: extended least squares

Lemma
Set

Gulul=cn, m=0,1,2,... M

and

where
Bslu] = (J|Fnlul; v, €] + cm)_1 ., m=0,....M
If ¢,, > 0 then

Lelu, B.[u]] < Lu,B8] VB8 >0

21



Analytic Methods: reduced extended least
squares objective

Substitute 3,|u] for B to obtain the reduced objective

)

m=

is globally Lipschitz

22



Results

Table 1: Relative cpu time of projection and analytic algorithms averaged over 30 ran-
dom trials. The baseline is the LS algorithm. Outliers were not included in the totals for
algorithms with an asterisk.

No Noise Noise
E < 20e™ E <0.05 E <0.0138
mean | low | high || mean | low | high || mean | low | high
LS 248 | 99 | 970 161 | 68 | 483 222 | 159 | 518
AP~ 229 | 99 | 1680 || 2.7 | 126 | 1765 | 2.3 | 162 | 1808
Sp* 96 | 72 | 591 || 1.19 | 35 | 746 - - -
ELS 66 | 74 | 365 7 | 35 | 258 84 | 76 | 304
L-BFGS || .29 | 41 | 196 A4 | 37 | 159 AT | 72 ] 182

10* \
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07t E
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o \ 3
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ki \
w \
= I \
D -
< 10 ° E \\ E
= \
o \
@ f \
\
10° E \\\ =
\
107k \ E
10°%L J
\
107° L | | | | | |
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iterations
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Analytic Methods: results

Aperture and noiseless image data for a segmented pupil on a 512 by 512 grid. The 3
diversity images are the optical system’s response to a point source at focus, and plus/minus
defocus respectively.
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Analytic Methods: results

real part of recovered wavefront imaginary part of recovered wavefront

200

250

300

350

400 -

4501

500

solution wavefront error

Aberrated wavefront for the segmented pupil recovered from 3 noiseless diversity point source
images on a 512 by 512 grid. The wavefront phase is unwrapped and compared to the true
phase. The wavefront error is in units of wavelength.
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Analytic Methods: results

Observed point-spread function Recovered point-spread function

50 100 150 200 250 300 350 400 450 500 (b) 5 100 150 200 250 300 350 400 450 500

True point-spread function

(C) 5 100 150 200 250 300 350 400 450 500

(a) Noisy point-spread function for a segmented pupil on a 512 by 512 grid. (b) Recovered
point-spread function. (c¢) True point-spread function.
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Analytic Methods: results

100
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200
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300
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400

4501

500 -

50 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

4500 ‘ ’

50 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

Aberrated wavefront for the segmented pupil recovered from 3 noisy diversity point source
images on a 512 by 512 grid. The wavefront phase is unwrapped and compared to the true
phase. The wavefront error is in units of wavelength. The ridges in the wavefront error is
due to Gibbs phenomenon associated with the noise filter.
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