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Crystallography 

Optics 

X-ray Coherent 
Scattering 
r

Scattering on Periodic 
Electron Density Function 

Phase Problem 
Underdetermined 

Scattering on non-periodic 
samples 

Phase Problem can be  
Overdetermined by 

Oversampling 

Scattering on Small 
Crystals 

Phase Problem can be  
Overdetermined by Oversampling 
Locally around Each Bragg point 



 

 

 

Theory of Partially Coherent Radiation 

Books: 

M. Born and E. Wolf, Principles of Optics; 

J.W. Goodman, Statistical Optics; 

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics 

We applied this general theory to a special problem of scattering 

partially coherent x-ray radiation on small crystal particles 



 

 

Scattering of Partially Coherent Radiation 
 
 
 
 

 
 

 
 
 

 
 
 

 

The incoming bea

The scattered bea

Eout(u,t)=∫dr

τr= PrPu/c – time d

For L2>>D (parax

Eout(u

 

kf 

CCD 
O´ 

Pr 

Pu

Ein(r,t) 

Eout(u,t) qu 
ki
 

m: 

Ein(r,t)=Ain(r,t) exp[ikir-iωt] 

m (Huygence-Fresnel principle): 

 ρ(r) Ain(r,t-τr) (1/PrPu) exp[ikir-iω(t-τr)] 

elay for radiation propagation between Pr and Pu 

ial approximation): PrPu≈ L2-nfr +(u-r)2/(2 L2) 

,t)=A(u,t) [exp(ikL2)/L2] exp(-iωt) 

L2
O



Scattering amplitude

A(u;t) =
Z
dr�(r)Ain(r;t��r)PL2

(u�r)e�iq�r; q = kf�ki

Here

PL2
(u� r) =

1

i�L2
ei(k=2L2)(u�r)

2

:

is the propagator (Green's function).

In the far{�eld (Fraunhofer) limit

(E
 ' 8 keV, L2 ' 3 m)

kD2=(2L2) << 1 =) D << 10�m:

neglecting r2 in PL2
(u� r)

Scattering amplitude

A(q0;t) =
Z
dr�(r)Ain(r;t� �r)e

�iq0�r; q0 = q + qu

where qu = (k=L2)u:
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Considerations: 

1. The scattering particle is a crystalline sample with a 

periodic electron density function 

2. The amplitude Ain(r,t-τr) is a slow varying function on 

the size of the unit cell 

 
 
 
 
 
 
 
 

ρ(r) = ρ∞(r)·s(r) 
 
From theory of Fourier transformation (convolution 
theorem) 
 

A(q´,t) = [F(q)/v] ∑n An(q´-hn,t), 

where hn - reciprocal lattice vector and  

 
An(q,t) = ∫dr s(r) Ain(r, t-τ r) e-iqr 

 
s(r) - shape function of crystal 
 
 



Coherent X-ray beam

Ain(r; t� �r) �! const

Scattering amplitude

A(q) =
F(q)

v

X
n
S(q� hn);

where S(q) Fourier integral of shape function:

S(q) =
Z
s(r)e�iq�rdr

Scattering intensity by crystal of �nite dimensions

(D >> a) { periodic function

I(q) = jA(q)j2 =
jF(q)j2

v2
X
n
jS(q� hn)j

2:

In the vicinity of the reciprocal point

hn = h, q ' h

I(Q) =
jF(h)j2

v2
jS(Q)j2; Q = q� h

2



 

 

 
 
 
 
 

General properties: 

 

1. For arbitrary form of crystal shape intensity distribution is 

periodic function of q 

2. For unstrained crystal: 

• Maximum value of intensity distribution:  

Imax =|F(hn)|2 V2 / v2. 

• Intensity distribution is locally centrosymmetric around 

every hn  

s(-q)=s*(q) → I(-Q)=I(Q) 

• It has the same shape for every reciprocal lattice point 

hn 

 



Partially coherent x-ray beam

Intensity at the position u of the detector plane at

Bragg point hn = h

I(Q) = hA(Q;t)A�(Q;t)iT =
jF(h)j2

v2
jAh(Q; t)j

2

I(Q) =
jF(h)j2

v2
drdr0s(r)s(r0)�in(r; r

0;�� )e�iQ�(r�r0)

Q = q0 � h = qu + q� h;

where �� = (PrPu � Pr0Pu)=c is a time delay.

Mutual coherence function

�in(r; r
0; � ) = hAin(r;t)A

�
in(r

0;t + � )iT :

For the cross-spectral pure light

�in(r; r
0; � ) =

r
I(r)

r
I(r0)
in(r; r

0)F(� ):

Here

I(r) =< jAin(r;t)j
2 >T; I(r

0) =< jAin(r
0;t)j

2
>T


in(r; r
0) { complex degree of coherence, F (� ) { time

autocorrelation function.

4



 

 

Considerations: 

1. Incident radiation is coming from a planar incoherent 

source on the distance L1 from the sample 

2. Gaussian distribution of intensity of the source 

3. L1>>S and D; paraxial approximation 

 

 

 

 

 

 

 

 

 

Complex degree of coherence (van Cittert-Zernike 

theorem): 

γin(r-r´)= eiψ ∫ds I(s) exp[-i (k/L1) (r- r´)·s]/ ∫ds I(s), 

ψ=(k/2L1) (r2- r´2), 

where I(s) – intensity distribution of the incoherent source 

 

O 
s 

r 

r´

L1 



Synchrotron source

Gaussian intensity distribution :

I(sx; sy) =
I0

2��x�y
e�

1

2
(s2x=�

2
x�s2y=�

2
y);

�x;y { halfwidths of intensity distribution

Complex degree of coherence (far-�eld,  � 1)


in(r?�r
0
?) = exp

0
B@�(x� x0)2

2�2x
�

(y � y0)2

2�2y

1
CA :

r? and r0? { projections of r and r0 across the beam

propagation direction.

Transverse coherence length

�x;y =
L1

k�x;y

For the parameters of APS source

E
 = 8 keV, L1 = 40 m

�x ' 350�m) �x ' 3�m

�y ' 50�m) �y ' 20�m
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Time autocorrelation function

Exponential form (Lorentzian power spectral density)

F (� ) = F0 exp(��=�k)

Longitudinal correlation length

�k = c�k; �k =
2

�

0
B@ �

2

��

1
CA

For a Si (111) double-crystal monochromator

��=� ' 3� 10�4 , � ' 1:5 �A

�k ' 0:32�m:

In the far-�eld limit

F (�� ) = F (jrk � r0kj) = F0 exp(�jrk � r0kj=�k);

rk and r
0
k { components of r and r0 along the beam.
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Scattered intensity

I(Q) =
jF(h)j2

v2

Z
dr'11(r)
in(r?)F(jrkj)e

�iQ�r

where

'11(r) =
Z
dr0s(r0)s(r0 + r)

'11(r) { autocorrelation function of the shape func-

tion s(r).

Coherent limit

�?; �k !1 =) 
in(r?);F(jrkj)! 1

Icoh(Q) =
jF(h)j2

v2

Z
dr'11(r)e

�iQ�r = jA(Q)j2 ;

where A(Q) is a kinematically scattered amplitude

A(Q) = (F(h)=v)
Z
drs(r)e�iQ�r

From convolution theorem

I(Q) =
1

(2�)3
Z
dQ0Icoh(Q

0)f�(Q�Q0)

where
e�(Q) =

Z
dr
in(r?)F(jrkj)e

�iQr

7





 

 

Iterative Methods for Phase Retrieval 

Gerchberg – Saxton – Fienup algorithm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Error-reduction algorithm (E

 
 
 
 
 

Hibrid input-output algorithm (
(Fienup-Millane) 

 
 
 
 
 
Best convergence with: β = 0.8 ÷ 0.9 and ε = 0.01

sk(x) F{sk(x)} Ak(q)=|Ak(q)| exp[iΦk(q)] 

A´F-1{ A´k(q)} s´k(x) 

Satisfy Object  
Domain Constraints 

               s´k(x), x in Sob 
sk+1(x)=    
                0, x not in Sob 

               s´k(x), |ck(x)- s´k(x)|<ε  
sk+1(x)=    
             sk(x) + β[ck(x)- s´k(x)], |ck(x
Satisfy Reciprocal 
Space Constraints 
R) 

HIO) 

 

k(q)=√Iexp(q) exp[iΦk(q)] 

)- s´k(x)|>ε 



 

 

Constrain for Reconstruction of Small Crystal Shape 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

s´k 

ck 
Re

Im

                Re[ck]=Re[s´k(x)]; Im[ck]=0, If x in 
ck(x)=    
                Re[ck]=0; Im[ck]=0, If x not in Sob, o
Re

Im
s´k 

ck 

Sob, and Re[s´k(x)]>0 

r Re[s´k(x)]<0 



 

 

Oversampling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Oversampling condition: 

σ = SFFT/Sobject > 2 

 
In our calculations: 

σ = SFFT/Sobject > 7 
 
 

Error Metric 
 
 
 
 
 
 

Nx=700 

Ny=400 

SFFT

Sob

         Σqx,qy [ |Ak(qx,qy)| - √Iexp(qx,qy) ] 
EA =  
                      Σqx,qy [ Iexp(qx,qy) ] 
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Reconstruction of Big Crystal. Partial Coherent Beam. 
 
 
 
 
 

ζx ζy Σx (BG) Σy (BG) Σx (BS) Σy (BS) 
∞ ∞ 107.5 127.5 90 92.5 
91 367 107.5 127.5 72.5 75 
45 183 112.5 127.5 42.5 72.5 
22 91 75 125 25 60 
11 45 45 115 15 42.5 

 

 
ζx,y – values of transverse correlation length (pixels) 

Σx,y (BG) – size of the background level (pixels) 

Σx,y (BS) – size of the bright central spot (pixels) 

 
 
 
 
 
 
 
 
 
 



How we can explain this e�ect

Intensity of scattered radiation

I(qx; qy) =
jF (h)j2

v2

Z
dxdy'z

11(x; y)
in(x; y)e
�iqxx�iqyy

where 'z
11(x; y) is projection of 3D autocorrelation func-

tion:

'z
11(x; y) =

Z
dz'11(x; y; z)

In the limit of small correlation lengths:

�x;y << D

we obtain for intensity:

I(qx; qy) �
jF (h)j2

v2
'z
11(0)

Z
dxdy
in(x; y)e

�iqxx�iqyy

Inversion of this expression gives complex degree of

coherence:


in(x; y)

with the typical size of area with maximum intensity

S � �x � �y

8



 

 

 

 
 

 

Summary  

• Theory of partial coherent radiation was applied to scattering on 

small crystals 

• Phase retrieval of diffraction patterns from small crystals was 

discussed 

• Effects introduced by partially coherent radiation on the 

reconstructed  images were investigated 
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