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Theory of Partially Coherent Radiation

Books:
M. Born and E. Wolf, Principles of Optics;
J.W. Goodman, Statistical Optics;
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
We applied this general theory to a special problem of scattering

partially coherent x-ray radiation on small crystal particles



Scattering of Partially Coherent Radiation

Ein(l',t)

The incoming beam:
Ein(r,t)=A(r,t) exp[ikr-imt]
The scattered beam (Huygence-Fresnel principle):
Eou(w,t)=Idr p(r) Au(r,t-t,) (1/P,P,) exp[ikir-io(t-t,)]
1= P,P,/c — time delay for radiation propagation between P; and P,
For L,>>D (paraxial approximation): P,P,~ L,-nga +(u-r)*/(2 L,)

Eou(u,t)=A(u,t) [exp(ikL,)/L,] exp(-imt)



Scattering amplitude

Alupt) = /drp(r)Am(r,t—Tr)PLQ(u—r)e_iq'r, q=k;—k;

Here

1,
Pr,(u—r) = N ¢! (k/2L2)(u=r)*

is the propagator (Green’s function).

In the far—field (Fraunhofer) limit
(Ey ~8keV, Ly >~ 3 m)
kD?/(2L,) << 1= D << 10um.

neglecting r* in Pr,(u —r)

Scattering amplitude

Adt) = [drp(r)Au(r,t — 7)e 0", ¢ = q +q,
where q, = (k/Ls)u.



Considerations:
1. The scattering particle is a crystalline sample with a
periodic electron density function
2. The amplitude A;,(r,t-1,) 1s a slow varying function on

the size of the unit cell

—)

p(r) = poe(r)-s(r)

From theory of Fourier transformation (convolution
theorem)

A(Q’,t) = [F@] D An(q-hat),

where h, - reciprocal lattice vector and

An(@) = [dr se) Au(r, tr,) €

s(r) - shape function of crystal



Coherent X-ray beam

App(r,t — 17p) — const
Scattering amplitude

Al = "5 5(q - by,

\4
where S(q) Fourier integral of shape function:

S(q) = /s(r)e_iq'rdr

Scattering intensity by crystal of finite dimensions

(D >> a) — periodic function

1q) = [A@? = T & 15q - ny)P.

vZ 1

In the vicinity of the reciprocal point
h, = h; q= h

1Q - FWs g2, = q—h

v2




General properties:

1. For arbitrary form of crystal shape intensity distribution is
periodic function of q
2. For unstrained crystal:
e Maximum value of intensity distribution:
Lnax =[F(hy)[* V2 /17,
¢ Intensity distribution is locally centrosymmetric around
every h,
s(-q)=s*(q) — I(-Q)=1(Q)
e [t has the same shape for every reciprocal lattice point

h,



Partially coherent x-ray beam

Intensity at the position u of the detector plane at

Bragg point h, = h
1(Q) = (A(Q,t)A"(Qt))y

LU YW

2
F(b) drdr's(r)s(r')Tin(r, T, AT)e Q)
A"

Q=d -h=qutq-—h,
where AT = (P, P, — P.P,)/c is a time delay.

Q) =

Mutual coherence function

Lin(r, 1, 7) = (Ain(r,6) Ay (r',6 + 7)) 1

For the cross-spectral pure light

mI‘I' 7' \/ \/ %nrr

Here

I(r) =< |An(r,t) > >1; I(r') =< [Asn(r't)]* >t

Yin(r, ") — complex degree of coherence, F'(7) — time
autocorrelation function.



Considerations:
1. Incident radiation is coming from a planar incoherent
source on the distance L; from the sample
2. Gaussian distribution of intensity of the source

3. L1>>S and D; paraxial approximation

—> T
"\» r

L

Complex degree of coherence (van Cittert-Zernike
theorem):
Vi(r-r")= & [ds I(s) exp[-i (k/L;) (r- r")-s]/ [ds I(s),
y=(k/2L)) (r*- 179),

where I(s) — intensity distribution of the incoherent source




Synchrotron source

Gaussian intensity distribution :

(a0, = 520 hesreiding
TO:0y

)

0.,y — halfwidths of intensity distribution
Complex degree of coherence (far-field, ¢ < 1)
(x-x)* (y- Y’)2>

ilrs =) = exp (- E 2 -
TR Te

r, and r| — projections of r and r’ across the beam

propagation direction.

Transverse coherence length

Sy

ko,

For the parameters of APS source

E,=8keV, L1 =40 m

o, >~ 350um = &, ~ 3um
o, = 50pum = &, ~ 20um



Time autocorrelation function

Exponential form (Lorentzian power spectral density)

F(7) = Fyexp(—7/7))

Longitudinal correlation length

2 [ \?
5‘“’5W(AJ

For a Si (111) double-crystal monochromator
AMA~3x1071 A~15A

§| = 0.32um.

In the far-field limit

F(AT) = F(Jry —1)|) = Foexp(—|r — | |/§)),

r| and rj — components of r and r’ along the beam.



Scattered intensity

= ORI e

p1(r) = [dr's(r)s(r’ + r)
¢11(r) — autocorrelation function of the shape func-

tion s(r).

Coherent limit
£, — 00 = Vin(ry), F(r)|) = 1

F —iQ-r
(@) = "0 farpy, meor = jaQ)P,
where A(Q) is a kmematlcally scattered amplitude

A(Q) = (F(h)/v) [ drs(r)e @

From convolution theorem

Q) = (2;)3 [dQTon(Q)T(Q - Q)

where

— /dryin(rL)F(|rH|)e_iQr






Iterative Methods for Phase Retrieval

Gerchberg — Saxton — Fienup algorithm

Fisd)) mmmmp| Ad@)=1A(Q)] expli®i(q)]

!

Satisfy Reciprocal
Space Constraints

!

%) | A K@) q AU @VTe(@) explidy(a)]

Error-reduction algorithm (ER)

S’k(x)s X in Sob
Sk+1(X)=
0, x not in Sy,

Hibrid input-output algorithm (HIO)
(Fienup-Millane)

8"K(X), |er(X)- 8" (X)|<e
Sk+1(X)=
sk(X) * Blek(X)- s"k(X)], [er(X)- s'k(X)[>€

Best convergence with: $ =0.8 + 0.9 and € = 0.01



Constrain for Reconstruction of Small Crystal Shape

Alm Alm
S x S k
¢
Ck > 1% Cr l{>e
Re[ci]=Re[s"«(X)]; Im[c]=0, If x in S, and Re[s"(x)]>0
ck(X)=

Re[ci]=0; Im[c, ]=0, If x not in S, or Re[s"(x)]<0



Oversampling

N,=400

SFFT

N,=700

Oversampling condition:

6= SFFT/Sobject >2

In our calculations:

6= SFFT/Sobject >

Error Metric

Z:qX,qy [ |Ak(qxaqy)| - \/Iexp(arqy) ]
E A~

Zaxay | IeXp(arqy) ]



Error Metric E,

Small Crystal. Coherent Beam

S —

1E-5 -
1E-11 —
1E-17 —
1E-23 —

1E-29 -

1E'35 i T | T [

-

0 50 100

|
250

Number of Iterations

300



Error Metric E,
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Error Metric E,

Big Crystal. Partial Coherent Beam
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Reconstruction of Big Crystal. Partial Coherent Beam.

Cx Sy LBG | 5,BG) | %, BS) | % (BS)
0 0 107.5 127.5 90 92.5
91 367 107.5 127.5 72.5 75
45 183 112.5 127.5 42.5 72.5
11 45 45 115 15 42.5

Cxy — values of transverse correlation length (pixels)
2.y (BG) —size of the background level (pixels)
2.y (BS) — size of the bright central spot (pixels)




How we can explain this effect

Intensity of scattered radiation

d —1
](q:r7Qy) | ( /d&?dyg@ll(l' y)’}/m(x y) ~ 4z WY

where ¢7, (x, y) is projection of 3D autocorrelation func-

tion:
o (x,y) = [ dzpn(z,y, 2)
In the limit of small correlation lengths:
Eoy << D
we obtain for intensity:
| F'(h )|29011 0) [ dadyrin(z, y)e~- w0

Inversion of thls expression gives complex degree of

1(qz, qy) ~

coherence:

with the typical size of area with maximum intensity

Sy X E,



Summary

e Theory of partial coherent radiation was applied to scattering on
small crystals

e Phase retrieval of diffraction patterns from small crystals was
discussed

e Effects introduced by partially coherent radiation on the

reconstructed images were investigated
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