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Abstract

A theory is proposed to study time-resolved X-ray diffraction on the pico-

and subpicosecond time scales. Electromagnetic fields are treated in the frame

of Maxwellian electrodynamics, whereas the molecular system is treated by using

quantum mechanics. An expression is given for the time-resolved X-ray signal;

it involves a three-time correlation function of the Fourier transformed electronic

density and of the electric dipole moment of the system. This theory is applied to

the study of the recombination of photo-dissociated iodine molecules in solution.

Both geminate and non-geminate recombination are considered. The feasibility of

the real time visualization of atomic motions is discussed.
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1 Introduction

Real time observation of temporally varying molecular structures during an elemen-

tary chemical process represents an immense challenge for modern science. Several

experimental techniques have been employed to accomplish this task. (i) Ultrafast spec-

troscopy, operating on the pico- and femtosecond time scales, permits the detection of

various short lived species and the determination of their lifetimes1,2. Unfortunately,

visible light interacts predominantly with outer shell rather than with deeper lying core

electrons that most directly indicate molecular geometry. It is thus difficult to convert

spectral data into data on molecular geometry. (ii) Another technique is electron diffrac-

tion giving access to time domains extending from nano- to picoseconds3,4. However,

the electrons having a short penetration depth, this technique is more useful for study-

ing gases and surfaces than for analyzing condensed matter. (iii) Finally, since their

discovery, X-rays have always been the dominant tool for the determination of molec-

ular structures5. If this technique is to be applied to the study of temporally varying

molecular structures, pulsed X-ray sources are required; a number of technically very

demanding constraints are imposed on pulse duration, brilliance and photon flux. Three

main types of instruments are presently available. Laser-produced plasma sources gen-

erate very short picosecond pulses or below. Another X-ray source is synchrotron, which

may produce high flux beams with pulses between 50 and 200 picoseconds with a well

defined structure and polarization. Finally, X-ray diodes with a laser triggered photo-

cathode may offer pulses between 10 and 100 picoseconds. Unfortunately, none of these

sources meets all the requirements needed for a real time probing of molecular motions.

The situation in this field at the present time recalls that of laser spectroscopy thirty

years ago. However, instrumental developments are extremely fast, and the situation

may evolve quickly.

The present paper deals with ultrafast time-resolved X-ray diffraction. It is important

to realize that if the times involved in the experiment are of the order of, or shorter

than molecular collision times, a new theory of time-resolved X-ray diffraction is called

for. The usual procedure of treating the slowly varying X-ray diffraction consists in

combining well known laws of chemical kinetics and of X-ray physics; this procedure

fails at short times where rate constants loose their meaning. An entirely new theory is
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then required, reminiscent of those familiar in ultrafast laser spectroscopy. Based on the

correlation function approach, it employs systematically nonlinear response functions

and susceptibilities; the latter are generally non-local in space and time. This approach,

necessary when working in the pico- and femtosecond time domain, may occasionally be

needed even at much longer times.

A number of ultrafast X-ray diffraction experiments have been realized the past few

years; they may be sketchily described as follows. (i) Thermal effects in crystalline lat-

tice, consecutive to the impact of an intense laser shot, were measured on the pico- and

subpicosecond time scales. Non-thermal melting, lattice expansion, and heat or strain

propagation were examined for crystals such as Au6, Ge7, GaAs8 and InSb9−11. More

complex structures like Langmuir-Blodgett films were also studied; a structural disorder

and an expansion were observed in these films12. (ii) Structural relaxation of the pho-

toexcited 4-dimethylaminobenzonitrile (DMABN) was monitored with 100 picosecond

time resolution. The excited state geometry was found similar to that present at low

temperatures13. (iii) Particularly interesting are nanosecond X-ray diffraction studies of

a number of biologically important crystals. One of them contains complexes formed by

the myoglobin and carbon monoxide molecules. Changes of the crystal structure due

to motions of this latter entity was observed14,15. The yellow protein was also studied

in its state [pR]; the presence of a photo-induced energy transfer was reported16,17. (iv)

All these papers refer to the solid phase; diffuse scattering of liquids was only very re-

cently addressed. The geminate recombination of the photo-excited I2 in CH2Cl2 was

investigated at 100 picosecond time scales18. As this reaction is considered as a sort of

prototype of a “simple” chemical reaction, it was extensively studied by ultrafast laser

spectroscopy over many years and it is now reexamined by X-ray techniques. The con-

clusion is that in spite of a great progress, the field of ultrafast X-ray diffraction still is

in an early state of development.

First theoretical attempts in the field of time-resolved X-ray diffraction were entirely

empirical. More precise theoretical work appeared only in late 90’s, and is due to

K.Wilson and his collaborators19−21; see also C.H. Chao et al.22 Their theory is based

on the following assumptions. (i) The scattering process is described in terms of the

first Born approximation and ignores absorption processes. (ii) The material system is

quantum-mechanical and is treated by adopting the wave function approach. The Born-
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Oppenheimer approximation and the independent atom model are used in this step.

(iii) The laser emitted X-ray pulse is considered as an incoherent sum of ultrashort sub-

pulses, the duration of which is determined by the properties of the X-ray source. (iv).

The instantaneous diffraction signal, response of the system to each of those ultrashort

X-ray sub-pulses, is calculated and is averaged over nuclear degrees of freedom. (v) The

final signal intensity is determined by convoluting the instantaneous diffraction signal

with the time envelope of the incident X-ray radiation. A number of predictions were

made, based on numerical calculations19,23.

This theory was the first to propose a tractable computational scheme. It also em-

phasized that the diffraction signal is not necessarily mere superposition of independent

signals as interference effects may be present for short pulses in the case of the potential

energy crossing. Moreover, an interesting suggestion was made to realize a nearly com-

plete population inversion with positively chirped laser pulses; this procedure should

permit to isolate the excited state dynamics from that characteristic of the ground

state24. The major disadvantage of the Wilson theory, in addition to that of introducing

a number of assumptions, is that it is not a statistical theory. Modern work on con-

densed matter invariably employs the correlation function approach, both in linear and

nonlinear spectroscopy2. It is certainly well adapted to problems encountered in this

field.

The purpose of the present paper is to develop a statistical theory of ultrafast X-ray

diffraction in the condensed phases. It is based on the time scale separation between

optical and X-ray frequencies; the X-ray and the optically triggered molecular processes

are treated separately, one after the other. The first of these two steps is accomplished by

adopting a Maxwellian description of X-ray scattering and the second is realized by using

standard methods of statistical mechanics of nonlinear optical processes2. The diffraction

signal is expressed in terms of a three-time correlation function, which contains the

Fourier transformed electron density and the dipole moment of the system. The theory

is then applied to the study of the recombination of photo-dissociated I2 in CH2Cl2,

both geminate and non-geminate. The experimental information about this process is

mainly due to the laser studies, although some preliminary time-resolved X-ray results

are also available. The agreement with experimental data, as far as they are available,

is very good; however, to a large extent, our results represent a theoretical prediction.
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It should also be noted that our theory provides a convenient frame which facilitates the

interpretation of time-resolved X-ray experiments and their comparison with laser data.

2 Basic Theory

2.1 Generalities

The system considered in this study is a solid or liquid material, containing N molecules

in volume V . It is submitted to an intense optical pump pulse of frequency Ω which

brings the system into a conveniently chosen initial state, for example a state in which

a chemical reaction is initiated. At a later time, it undergoes the action of an X-ray

probe pulse of intensity IX which permits to measure its diffraction pattern and changes

of molecular structure. The time delay between the optical pump pulse and the X-ray

probe pulse is noted τ . These two pulses have in general a different polarization. The

measured quantity is the signal ∆S, defined as time integrated X-ray energy flux S

scattered in a solid angle in presence of the pump minus time integrated X-ray energy

flux S0 in a solid angle in the absence of the pump. The signal ∆S is thus a differential

quantity.

The present experiment has two characteristic features which merit attention. The

first is that the optical pump and the X-ray probe pulses have vastly different energies

and wave lengths. The typical energy of photons in the optical pulse is of the order of

a few eV, whereas that of photons in the X-ray pulse is in the keV range. A similar

statement holds for the wave lengths, which are of the order of 103 Å for the optical

pulse and of 1 Å for the X-ray pulse. This duality strongly influences the experimental

work, requiring high energy techniques in the X-ray part of work and laser techniques in

its optical part. On the contrary, the presence of this scale separation simplifies, rather

than complicates, theoretical work. It makes the separate study of X-ray probing and of

optical excitation possible, which reduces the complexity of the problem considerably.

The second major point is that the wave length λ of the optical radiation is much

longer than molecular dimensions, but still much smaller than experimental cell dimen-

sions. However, molecular motions are probed only over distances of the order of l ¿ λ

(Fig. 1). A system experiencing a spatially varying electric field is then dynamically
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equivalent to an ensemble of sub-systems submitted to a spatially constant electric field,

different when going from one sub-system to another. The vector r no longer denotes a

space point, but selects a given sub-system. It is thus legitimate to work initially with

a spatially constant electric field and to average the results over all sub-systems at the

end of calculation. This point of view, although not always stated explicitly, is regularly

employed in laser spectroscopy; it is also reminiscent of the theory of X-ray diffraction

of powders.

These two features suggest the following route to build a theory of time-resolved X-ray

diffraction. Its first step consists in developing a Maxwell-type theory of X-ray scattering

by optically excited systems, and the second step in presenting a statistical description

of pump-induced changes in the electron density. The final step consists in combining

these results to obtain an expression for the differential signal ∆S. Absorption processes

will be ignored all along in this paper. These three problems are studied separately in

the subsequent parts of this Section.

2.2 Maxwellian Description of X-Ray Diffraction in Presence

of Optical Excitation

The theory of X-ray scattering by a stationary system of atoms and molecules is devel-

oped in many textbooks25. Its key quantity is the Fourier-transformed electron number

density ñ(q), which is independent of time. Using this theory permits to extract from the

experimental diffraction pattern electronic densities as well as the geometrical structure

of the crystal. In disordered systems like powders or liquids, the data are less complete

but still remain very rich. A large body of information was accumulated in this way.

However, if the system is submitted to an optical excitation, it no longer remains in

thermal equilibrium, and the charge densities no longer are stationary. The Maxwell

theory of X-ray scattering must thus be modified to include this specific feature.

As conventional in electromagnetism, the body under consideration is represented

by a system of charges and currents. The corresponding densities ρ(r, t) and J(r, t)

are supposed to be known functions of r and t. The incident X-ray electric and mag-

netic fields E(r, t) and H(r, t) are pulses having planar wave fronts; one has E(r, t) =

E(r, t) exp(−iωt) and H(r, t) = H(r, t) exp(−iωt) where ω is the carrier frequency in the
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keV range. As the purpose of the experiment is to monitor optically excited molecular

motions in the system, the pulse duration should correspond to these. The amplitudes

E(r, t) andH(r, t) are thus chosen to vary on optical time scales, long compared to 1/ω; it

is then justified to neglect ∂E/∂t and ∂H/∂t as compared with iωE and iωH. Moreover,

the system being globally neutral, the total charge density ρ may be taken equal to zero.

The current density J(r, t) is given by the formula J(r, t) = (ie2/mω)n(r, t) E(r, t),

where e and m denote the electronic charge and mass, respectively, and n(r, t) their

number density at point r and time t25; this relation is valid if the X-ray frequencies are

large as compared to the absorption edge frequencies in atoms5. The time dependence

of n(r, t) is due to the optical excitation; since optical frequencies are small compared to

X-ray frequencies, it must also be considered as a slow variable. Under these conditions,

the Maxwell equations of the irradiated body are completely defined:

divE = 0, divH = 0, rotE = −
1

c

∂H

∂t
, rotH =

4π

c
J+

1

c

∂E

∂t
. (1)

Once these equations have been established and appropriate boundary conditions im-

posed, the problem reduces to that of searching for solutions which describe the scattered

electromagnetic radiation in the far field limit. It is then convenient to introduce the

electric displacement vector D(r, t) = ε(r, t) E(r, t) where ε = 1 − (4πe2/mω2)n(r, t)

and to recast the Maxwell equations in order to obtain a wave equation for it. The

procedure remains similar to that employed in the standard theory, except that the am-

plitudes E(r, t), H(r, t) and n(r, t) are now functions of time and not simply constant.

There results:

∆D(r, t)−
1

c2
∂2D(r, t)

∂t2
= rot rot

(

4πe2n(r, t)

mω2
E(r, t)

)

. (2)

On the right-hand side of this equation containing the small quantity 4e2n(r, t)/mω2,

E(r, t) must be taken as a given field of the incident wave. A solution which corresponds

to an outgoing scattered wave may be obtained by the theory of retarded potentials26.

In fact, putting E(r, t) = E(r, t) exp(i(kIr − ωt)) where kI is the wave vector of the

incident radiation, introducing the effect of time retard not only in the phase factor

i(kIr−ωt) but also into the field amplitude E(r, t), and employing well known formulas

of the vector analysis, one finds

D

(

R0, t+
R0
c

)

=
e2

mω2
e−iωt

R0
kD ×

[

kD × E(t)

∫

n(r, t)e−iq.r dr

]

. (3)
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In this equation kD is the wave vector of the scattered radiation, q = kD − kI is the

scattering wave vector, whereas R0 points from an arbitrarily chosen point inside the

scattering body to the point of observation. It should be noted that the latter is located

in the vacuum and thus D = E. In the case under consideration the incident radiation

is pulsed, as is the scattered radiation; the corresponding intensities are angle and time-

dependent. Then,

S =

∫ +∞

−∞

dIS
dΩ

dt =
cR20
4π

∫ +∞

−∞

E∗(t)E(t) dt

=
cR20
4π

∫ +∞

−∞

E∗(t+
R0
c
)E(t+

R0
c
) dt

=
c

4π

(

c2

mω2

)2

k4D sin2 θ

∫ +∞

−∞

E∗(t)E(t)

∣

∣

∣

∣

∫

n(r, t)e−iq.r dr

∣

∣

∣

∣

2

dt

=

(

e2

mc2

)2

sin2 θ

∫ +∞

−∞

IX(t) f(t)f
∗(t) dt,

(4)

where θ is the angle between EI and kD and f(t) =
∫

drn(r, t) exp(−iqr) = ñ(q, t) is the

X-ray form factor. In an optically excited system brought out of thermal equilibrium,

this latter quantity is expected from physical grounds to vary with time. However, the

above result was obtained here formally by solving the Maxwell equations in the slowly

varying amplitude limit; in earlier work this step was taken as granted a-priori and was

not submitted to a formal check19−21. It should be stressed, however, that the simplicity

of the result rests on the definition of the signal as a time-integrated quantity; it is lost

otherwise, as seen by considering Eq. (3) and Eq. (4).

In practice, the incident X-ray radiation may be produced in different ways. If

it is generated by a non-polarized source, the polarization factor P = sin2 θ has to be

replaced by the factor P = (1/2)(1+cos2 ψ), where ψ denotes the angle between the wave

vectors kI and kD. If a synchrotron source is employed, two situations are frequently

encountered. The observation point may be located in the vertical scattering plane and

the polarization factor P is then equal to 1; it may also be contained in the horizontal

scattering plane where P = cos2 ψ. For more details, see Ref. [5].
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2.3 Statistical Determination of the Time Dependent Form

Factor

The Maxwell description of X-ray diffraction by an optically excited system, presented

in the preceding Section, is incomplete. In fact, the temporally varying form factor f(t)

was considered as a known function, which is not true. It can be determined, however,

by using methods of statistical mechanics of nonlinear optical processes2. The quantity

f(t)f ∗(t) should be averaged over all degrees of freedom of the perturbed system; this

operation is denoted by the symbol 〈〉. Moreover, it is convenient to express the time

delay τ between the optical pump and the X-ray probe pulse explicitly. The scattered

X-ray intensity S can then be written:

S =

(

e2

mc2

)2

P

∫ +∞

−∞

IX(t) 〈f(t+ τ)f ∗(t+ τ)〉 dt. (5)

It is noteworthy that the only quantity in Eq. (5) referring to the X-ray scattering is

IX : the problems of X-ray scattering and of optical excitation have been disentangled

from each other. The electric field to be considered from now on is the optical electric

field EO(r, t); the subscript O is no longer necessary and will be suppressed in what

follows; this simplification of the notation should introduce no confusion. The effect of

the optical excitation on electronic densities has been studied by many authors, mostly

in the context of laser spectroscopy2. The methods used therein are easily transferable

to the calculation of 〈f(t+ τ)f ∗(t+ τ)〉, and will be employed in what follows.

Let then H0 denote the quantum mechanical Hamiltonien of the system in absence

of any perturbation. At large negative times t → −∞, the sample is submitted to an

intense electric field E(r, t) having, as indicated earlier, a constant amplitude inside the

system. If the dipolar approximation is employed, the perturbation Hamiltonien takes

the form H1 = −MiEi, where Mi and Ei are the components of the vectors M and E

along the axis i; the Einstein convention is employed all along, involving a summation

over the doubled indices. The complete Hamiltonien of the system is then H = H0+H1.

To execute the operation 〈〉 in Eq.(5), the density matrix ρ(t) of the perturbed system is

required. It can be obtained by solving von Neumann’s equation ∂ρ/∂t = −(i/h̄) [H, ρ]

by the help of the perturbation theory. One can then write ρ = ρ0+ ρ1+ ρ2+ . . . where

ρ0, ρ1, ρ2, . . . are successive corrections of ρ. Choosing the equilibrium density matrix
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ρ0 in the canonical form, one finds

ρ1(t) = i

∫ +∞

0

Ei(r, t− τ1)e
−iL0τ1L1iρ0 dτ1

ρ2(t) = i2
∫ +∞

0

∫ +∞

0

Ei(r, t− τ1)Ej(r, t− τ1 − τ2)

× e−iL0τ1L1ie
−iL0τ2L1jρ0 dτ1dτ2,

(6)

where L0 = (1/h̄) [H0, ] is the non-perturbed Liouville operator of the system, L1i =

(1/h̄) [Mi, ] and [ , ] a commutator. The above determination of the perturbed density

matrix constitutes the first step of calculation.

Once this important step was accomplished, the quantum operator for the scatter-

ing factor f(t) must be defined. The central dynamical variable of the present theory

is the electron density n(r, t). In microscopic language, the quantity n(r, 0) = n(r)

can be written n(r) =
∑

δ(rm − r) where rm denotes the position of the electron m,

the summation running over the Ne electrons of the scattering system; n(r, t) is then

equal to exp(iH0t/h̄)n(r) exp(−iH0t/h̄). The form factor is its Fourier transform f =
∫

dr exp(−iqr)
∑

δ(rm − r) =
∑

exp(iqrm); f(t) can then be written

exp(iH0t/h̄)f(q) exp(−iH0t/h̄). The time is introduced into the calculation through

the time dependent density matrix ρ(t) given above. Then,

< f(t)f ∗(t) >=Tr
(

∑

e−iq.rmnρ(t)
)

= Tr
(

∑

e−iq.rmnρ0

)

+ Tr
(

∑

e−iq.rmnρ1

)

+ Tr
(

∑

e−iq.rmnρ2

)

+ . . .

(7)

where rmn denotes a vector pointing from the electron m to the electron n. The problem

then reduces to that of substituting the expressions for ρ0, ρ1 and ρ2 into Eq. (7) and

rearranging the resulting formulas. Considering the properties of higher order correla-

tion functions vis-a-vis time shift and time inversion facilitates the reduction and the

transformation of various mathematical expressions involved.

In the above calculations, the optical pump electric field E(r, t) was considered to

be spatially constant. However, according to the discussion given in Section 2.1 and

illustrated in Fig. (1), this assumption in reality holds true only for individual sub-

systems into which the system was decomposed, and does not apply to the system as

a whole. To reach the end result, it is still necessary to average the above expressions
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over all sub-systems. In addition, the incident optical field is never entirely coherent

and always has at least some stochastic characteristics. It is thus necessary to average,

not only over different subsystems, but also over different realizations of the incident

optical field. Clumped together, these two operations will be denoted by the symbol

〈〉O. Another operation which is required is the averaging over the states of the non-

perturbed system and is denoted by the symbol 〈〉S. These two operations are of course

independent of each other. Then, recalling that E(r, t) is a progressive wave and that

its average 〈〉O over the whole system vanishes, one obtains:

< f(t)f ∗(t) >=
〈

∑

e−iq.rmn(0)
〉

S
−
1

h̄2

∫ +∞

0

∫ +∞

0

〈

Ei(r, t− τ1)Ej(r, t− τ1 − τ2)
〉

O

×

〈[

[

∑

e−iq.rmn(τ1+τ2),Mi(τ2)
]

,Mj(0)

]〉

S

dτ1dτ2 (8)

2.4 Statistical Expression for the Diffracted Signal

The final expression for the signal recorded in a time-resolved X-ray experiment can now

be written by combining partial results of Sections 2.2 and 2.3. In fact, inserting Eq. (8)

into Eq. (5) and recalling that ∆S = S − S0,, where S is the time integrated diffrac-

tion intensity in presence of optical excitation and S0 is the time integrated diffraction

intensity in its absence, there results:

∆S(q, τ) =

∫ +∞

−∞

IX(t− τ)∆Sinst(q, t) dt

∆Sinst(q, t) = −

(

e2

mc2h̄

)2

P

∫ +∞

0

∫ +∞

0

〈

Ei(r, t− τ1)Ej(r, t− τ1 − τ2)
〉

O

×

〈[

[

∑

e−iq.rmn(τ1+τ2),Mi(τ2)
]

,Mj(0)

]〉

S

dτ1dτ2.

(9)

This is the main result of this work: ∆S(q, t) as given by Eq. (9) represents the

statistical expression for the diffracted signal which was desired. Its general form can

be easily understood. The basic dynamical variable involved in X-ray scattering is the

Fourier transformed electron density; the presence of the factor f(τ1 + τ2)f
∗(τ1 + τ2) =

∑

exp [−iqrmn (τ1 + τ2)] is thus inevitable. The remaining quantities in Eq.(9) describe

the effect of the optical excitation. In fact, according to the Fermi golden rule, the

rate of this excitation is ∼ 1/h̄2(EMif )
2 which explains the presence of the factors

1/h̄2, Ei(t − τ1), Ej(t − τ1 − τ2), Mj(0) and Mi(τ2). The connection of different time
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points can of course not be explained that simply. Finally, the signal ∆S appears as a

convolution between the X-ray pulse shape IX and the quantity ∆Sinst, the diffraction

signal generated by an infinitely short X-ray probe pulse. It should be stressed that this

is a genuine result of the theory, and is not a consequence of an ad hoc assumption.

Another major feature of the above result is the presence therein of three-time cor-

relation functions, associated with the variables ñ(q), M and E, respectively. These

objects are characteristic of statistical mechanics of non-equilibrium systems. If the per-

turbation generating the non-equilibrium is weak, two-time correlation functions suffice;

this is the case for all types of linear spectroscopy. If the perturbation is stronger, higher-

order time correlation functions appear: three-time correlation functions are present in

Eq. (9), four-time correlation functions are required in pump-probe experiments in laser

spectroscopy, etc. Nevertheless, the structure of the resulting expressions for the signal

is similar everywhere. The expression for ∆S provided by this theory is thus conforming

to the existing body of information and its form is by no means a surprise.

It should finally be emphasized that the signal ∆S of Eq. (9) depends, not only

on the properties of the material submitted to investigation, but also on those of the

incident optical wave. The latter determines the structure of the electric field correlation

function, and thus the characteristics of the resulting signal. The effects of coherence or

incoherence of the pump radiation can be treated on this level of the theory. The signal is

non-vanishing even at small negative times; this is a consequence of the overlap between

the pump and probe pulses. It should also be noted that optical pumping modifies not

only the coherent, but also the incoherent Compton component of the scattered X-ray

radiation; this effect does not play any role in the subsequent analysis, but may be

important in some cases. All these various effects are describable by Eq. (9), which

shows its generality.

3 Recombinaison of molecular iodine in solution

3.1 Basic Information

The theory which was described above will now be applied to the study of the gemi-

nate and non-geminate recombination of photo-dissociated iodine molecules diluted in
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CH2Cl2. This reaction has been considered over many years as a prototype of a “sim-

ple” chemical reaction, and has therefore been carefully examined by laser spectroscopic

techniques. Here it will be reexamined using time-resolved X-ray diffraction techniques;

for a review of recent technical developments, see Ref. [27]. One started by exciting

the solution with a laser generated optical pulse, bringing the iodine molecule into the

electronic states B and 1πu (Fig. 2). The molecule then dissociates very rapidly, in times

of the order of a picosecond. The hot atoms recombine, in part geminately and in part

non-geminately. The former process requires 500 ps whereas the latter takes place on

the microsecond time-scale; these numbers are known from laser spectroscopy 28−31. The

recombination processes were monitored using a time delayed X-ray probe pulse from

the synchrotron. The duration of the optical pump pulse τO was 150 fs and that of the

X-ray pulse τX was 80 ps. The pump and probe sequence was repeated at 896.6 Hz and

the diffuse scattering was recorded on a CCD based area detector placed downstream

the sample18. Although comparatively long due to technical constraints, τX still was

short enough to follow the recombination processes between 100 ps and a microsecond.

The purpose of this work is to interpret the existing X-ray data; theoretical predictions

will also be given.

3.2 Theoretical Analysis

It is convenient to start by giving a short description of times characteristic of a time-

resolved X-ray diffraction experiment; four of them merit particular attention. The first

two are the optical pump pulse duration τO and the X-ray probe pulse duration τX .

According to basic principles of physics, it is impossible to follow molecular motions at

time scales much shorter than the pulse duration, i.e. much shorter than τO and τX .

The dynamics associated with them are not detectable by the experiment. The third

characteristic time is the relaxation time τR of molecular rotations. At times shorter

than τR the pump electric field induces a partial alignment of molecular orientations in

the scattering body; this alignment is entirely lost if τ À τR. One concludes that the

diffraction pattern depends on the mutual orientation of the vectors q and E if τ ¿ τR;

on the contrary, polarization effects are absent if τ À τR. The last characteristic time

τI = 1/∆ω is related to the vibrational interference of two closely lying electronic states,

separated by an energy gap ∆E = h̄ω . This interference generates beating phenomena,
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similar to those observed in laser spectroscopy; the crests in time plots are separated by

an interval equal to τI . However, if either τO À τI or τX À τI , this oscillating component

averages out to zero and the diffraction pattern reduces to a superposition of individual

patterns. More generally, several electronic states may interact and a group of τI ’s may

exist.

Which are the times that intervene in the present experiment? How do they compare

with the time scales mentioned above? As τX is 80 ps, only the slow recombination dy-

namics are detectable and the fact that τO is much shorter does not alter this conclusion.

On the other hand, τR is of the order of a few picoseconds. This time is very short as

compared with τX , and the liquid can be considered as isotropic; no polarization effects

are expected. Finally, in the range of inter-atomic distances submitted to investigation,

the times τI are extremely short as compared with τX ; vibrational interference of dif-

ferent electronic states thus plays no role. It is the useful to introduce a new molecule

I∗2 resulting from dissociation of photo-excited I2; setting its length to R0 = 4 Å is arbi-

trary to a certain extent, but small variations of it are irrelevant at time scales of the

experiment. The recombinaison process under study can then be modeled as a chemical

reaction in which I∗2 undergoes either the transformation I
∗
2←→2I or the transforma-

tion I∗2←→I2 where I2 is the ground state iodine molecule with RX=2.67 Å; see Fig. 2.

The first of these two reactions leads – sooner or later – to non-geminate recombina-

tion, whereas the second represents geminate recombination. The energy deposited by

the laser excitation leaves the I∗2 molecule hot, with all closely spaced electronic states

populated. This picture has many advantages: starting the calculation immediately af-

ter photo-excitation would require a major effort to describe the passage of the system

through energy crossing points, its pre-dissociation, etc. As these processes all evolve on

the picosecond time scale, they are not accessible to this experiment; an effort to study

them would thus not be justified.

Under these experimental conditions, the signal ∆S of Eq. (9) simplifies considerably.

In fact, if reaction dynamics is followed on time scales beyond 100 ps, and the optical

excitation processes evolve on a 1 ps time scale, the reaction driven electron density

ñ(q) and the dipole moment M are statistically independent; they can thus be treated

separately. Moreover, as beating phenomena can not be observed with the presently

available experimental set-up, non-diagonal matrix elements of the variable ñ(q) can
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safely be omitted. Finally, the calculation can be simplified further by noticing that,

with the exception of electronic degrees of freedom, the system behaves classically; the

separation of highly excited vibrational energy levels of I2 is much smaller than kBT ,

which justifies this statement. Then, designating by fI the form factor of atomic iodine,

the same in the all electronic states considered, and by nj(t) the population of the

electronic state j at time t; and denoting by
∑

the summation over the Nn nuclei

located at rµ and rν where rµν = rµ−rν , and by 〈〉j the average over the nuclear degrees

of freedom in the electronic state j, one finds:

∆S(q, τ) =

∫ +∞

−∞

IX(t− τ)∆Sinst(q, t) dt

∆Sinst(q, t) =

(

e2

mc2

)2

f 2I P

×
∑

j

[

nj(t)
∑

µ,ν

(

〈

e−iq.rµν(t)
〉

j
−
〈

e−iq.rµν(t)
〉

0

)

] (10)

nj(t) = 2Re

[

1

h̄2

∫ +∞

0

∫ +∞

0

〈

E(r, t−τ1)E(r, t− τ1 − τ2)
〉

O

×
〈

Moj(τ2)Mjo(0)
〉

S
dτ1dτ2

]

,

where E is the pump electric field and M the component of M along E.

The physical meaning of Eq. (10) is as follows. After optical excitation, nj(t)

molecules are promoted into the state j; their contribution to the diffracted signal is

equal to nj(t) 〈exp(−iqr(t))〉j. This promotion generates a population deficit, or a hole,

in the ground electronic state equal to −
∑

j nj(t); its contribution to the signal is

−
[

∑

j nj(t)
]

〈

exp(−iqrµν(t)
〉

0
. The differential signal ∆S of Eq. (10) can then be

viewed as a normal signal S by simply adding the hole to the existing particles; this

picture greatly simplifies the discussion. It is also worth noting that Eq.(10) is similar

to that proposed by Wilson et al. However, it is only valid if the restrictive conditions

enumerated above are fulfilled; it has by no means the general character of Eq. (9).

3.3 Model

The following model can now be proposed to study the reactions I∗2←→2I and I
∗
2←→I2;

they are both supposed to start at time τ = 0. (i) The electronic states which inter-
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vene in the process are those where the iodine molecule dissociates into atoms in their

2P3/2 state (Fig. 2). There are ten altogether: three of them, the ground state X and

the states A/A’ are attractive, whereas the seven others, including the 1πu state, are

repulsive32. (ii) Several recombinaison pathways are available, see figure 3. The reac-

tion I∗2↔2I corresponds to the escape from the solvent cage and eventually leads to the

non-geminate recombination. This process involving the seven non-bonded electronic

states just mentioned, is called α. As far as the reaction I∗2←→I2 is concerned, it may

be realized in two different ways: either indirectly by trapping into the bound states

A/A’ and subsequent de-excitation to the ground state X, or directly by vibratonal de-

excitation in the X state. These two processes are called β and γ, respectively. (iii) The

total initial population of the seven nonbonded states is equal to nα, the total initial

population of the two bound states A/A’ is equal to nβ and the initial population of

the extended X state is equal to nγ. These three numbers define the initial state of the

hot I2* molecule. (iv) The decay of these populations is exponential for the processes

α and β with time constants τn and τisc; the first subscript refers to non-geminate re-

combination, and the second to inter-system crossing between the electronic states X

and A/A’ of different multiplicity. As far as the γ process or vibrational cooling of the

X-state is concerned, it is in the heart of the present study. Its decay is thus described

more precisely using a computer calculated radial distribution function ρX(R, t) that

obeys the initial condition ρX(R, 0) = δ(R − R0) with R0 = 4 Å. (iii) The quantities
〈

exp(−iqrµν)
〉

are calculated by averaging over an isotropic ensemble. This generates

terms of the form sin(qR)/(qR), valid even if R is time-dependent and R = R(t). These

terms may be neglected in repulsive electronic states where interatomic separations are

large. The final result is

∆Sinst(q, t) = 2

(

e2

mc2

)2

f 2I P

×

{

− ξE(τ)
sin(qRX)

qRX

+ ξA/A′(τ)
sin(qRA/A′)

qRA/A′

+ ξX

[
∫ +∞

0

4πr2ρX(r, t)
sin(qr)

qr
dr

]

}

,

(11)

where ξE(τ)− nγ = nα exp(−τ/τn) + nβ exp(−τ/τisc) indicates the fraction of electroni-

cally excited I2 molecules, ξA/A′(τ) = nβ exp(−τ/τisc) denotes the fraction of I2 molecules

captured in the two states A/A’, whereas ξX = nγ is the fraction at the initial time τ = 0
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of I2 molecules in the extended X state with R = R0 = 4 Å. Moreover, RX and RA/A′

are the interatomic separations in the states X and A/A’, equal to 2.67 and 3.01 Å,

respectively.

Finally, there still remains to describe how the radial density function ρX(R, τ) was

determined from Molecular Dynamics simulations. Samples containing 512 or 216 rigid

solvent molecules and one flexible I2 molecule were considered at the experimental solvent

density and at ambient temperature (ρ = 1.33 g.cm−3, T = 300 K). They were first

equilibrated for 500 ps; 10 configurations 10 ps apart were then extracted from a 100 ps

long trajectory. In each of these configurations the iodine molecule was stretched from

the equilibrium distance to R0 = 4 Å and the system was let to relax towards equilibrium

in micro-canonical runs of 100 ps. ρX(R, τ) was then calculated as the distribution of R

averaged over the 10 independent runs in a time window of 1 ps around τ . A three-site

model composed of CH2 and Cl units was employed for the dichloromethane molecules

with a site-site 6-12 Lennard-Jones interaction potential33. These molecules were kept

rigid using the SHAKE/RATTLE method34. The intramolecular Morse potential of I2

was taken from ref. 35 and Lennard-Jones potentials between iodine atoms and solvent

sites were constructed using the Lorentz-Berthelot formula with the parameters taken

from ref. 36. In all simulations, a time-step of 1 fs was used. Further details will be

published in a forthcoming paper37. The simulations were repeated with R0 = 5 Å. As

this change did not affect the results to any significant extent, no further attempt was

made to study physically more appropriate distributions of R0.

Although these simulations rely on an empirical potential, an important outcome

of the calculation was that the iodine atoms stay a relatively long time at the turning

points of the X-state potential. Consequently, the analysis can be simplified, while

maintaining a high accuracy, by assuming that the iodine atoms are located at those

turning points. Then, supposing for simplicity a mono-exponential energy decay of the

form U = D exp(τ/τv), one finds easily:

U = D
(

1− e−b(∆R)
)2
⇒ ∆R = −

1

b
ln

(

1±

√

U

D

)

U(τ) = De−
τ

τv , ∆R(τ) = −
1

b
ln
(

1± e−
τ

2τv

)

,

(12)

where ∆R = R − RX , D = 1.55 eV the dissociation energy of molecular iodine and
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b = 1.91 A−1 a constant35; this formula can be easily extended to the case of a two-

exponential energy decay. The X-ray diffraction pattern at time τ can thus be calculated

by assimilating the recombining I atoms to two diatomic molecules with atoms separated

by RX + ∆R+(τ) or RX + ∆R−(τ), and by combining Eq. (11) and Eq. (12). These

calculations were realized up to τ = 100 ps. The results are illustrated in Fig. 4 for

τ = 1 ps and τ = 25 ps; the difference between simulations and model calculations

becomes negligible for τ > 25 ps. In view of their quality, this model has been used in

all subsequent calculations.

3.4 Experimental Data and Theoretical Predictions

The theory has now attained a stage where it can produce explicit predictions and

facilitate the analysis of the existing experimental data. The diffraction signals depend

on two variables, the wave vector q and the pump-probe time delay τ . Time-resolved X-

ray diffraction is thus a two-dimensional technique, in the same sense as multidimensional

NMR or multidimensional laser spectroscopy. It is then useful to distinguish between

q-resolved and τ -resolved diffraction patterns. Of course, a complete collection of q-

resolved diffraction patterns contains exactly the same information as the full collection

of τ -resolved diffraction patterns. However, one never has at one’s disposal all of them.

Using a CCD detector, one collects q-resolved patterns at a limited number of time

points, whereas a point detector is more suitable for time scans at a limited number of

q-points. It is thus useful to examine each of them separately.

Let us study the τ -resolved diffraction patterns first; they are easier to analyze than

their q-resolved analogues. As indicated earlier, the calculations were realized for the so-

lution I2/CH2Cl2 where experimental X-ray data are partially available. Time constants

were taken from the laser experiments28−31: τn was chosen equal to 1 µs, τisc to 0.51 ns

and τv to 0.09 ns. The initial populations nα, nβ and nγ were estimated from the X-ray

data: nα = 0.05, nβ = 0.25 and nγ = 0.2518. Applying Eq. (11) then provided theo-

retical curves, which were compared with experimental curves when the latter became

available. (i) Time-resolved diffraction pattern calculated with q = 4π sin θ/λ = 2 Å−1

are illustrated in Fig. 5.a. Considered as a function of τ the signal ∆S(q, τ) first exhibits

a steep rise corresponding to the build-up of the excited state populations; the zero time

delay τ = 0 is placed at its half-maximum. Its slope depends on the pump and probe
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pulse duration τX and τO: shorter pulses produce steeper curves. After having reached

its maximum, ∆S(q, τ) decreases monotonously. In its first 0.1 ns portion, the decay of

the signal is governed by the process γ; however, as τX is comparatively long, it mani-

fests itself only to a minor extent. The next portion of the curve, from approximately

0.1 ns to 1 ns, is dominated by the process β. Finally, its last portion corresponds to

time delays longer than 1 ns; the signal is influenced basically by the slow process α.

(ii) Absolute intensities of the signals as well as relative amplitudes of their components

strongly depend on the choice of q. For example, if q = π/RX = 1.58 Å
−1, ∆S(q, τ) is

very weak but the contribution of the process γ is relatively prominent (Fig. 5.b). (iii)

Even the sign of the signal is q-dependent (Fig. 5.c). The overshot from negative to

the positive values when passing from short to long time delays is possible as in laser

spectroscopy. Experimental data are only available for the time domain τ < 0.6 ns; they

are illustrated on the last of the above three figures. The characteristic features seen in

the experiment are similar to those predicted by theory.

The q-resolved diffraction patterns are examined next. The time constants τn, τisc

and τv as well as the initial populations nα, nβ and nγ are the same as above. The

amplitude of the signal ∆S(q, t) decreases with increasing time delay τ : the concen-

tration of all excited molecular species including the hole decreases with time. Down

to very small values of q, ∆S(q, t) is non-zero, due to the decorrelation of free I atoms

motions in process α. Other comments are as follows. (i) The q-resolved diffraction

pattern calculated for τ = 2 ns is illustrated in Fig. 6.a. As this time is much longer

than any other time except τn, only the hole is present due to the existence of free iodine

atoms. The signal is then particularly simple and depends only on the initial distance

RX = 2.67 Å; it is representative of the α process. (ii) The diffraction pattern is next

calculated for τ = 0.2 ns (Fig. 6.b). In this case the A/A’ molecules are present in the

mixture in addition to the hole. The oscillations in the diffraction pattern thus exhibit

two distances, RX = 2.67 Å and RA/A′ = 3.01 Å. This pattern is representative of the

processes α and β. (iii) Finally, the diffraction pattern expected at τ = 0.0 ns is calcu-

lated too (Fig. 6.c). The molecules A/A’ and the extended X state molecules are then

present in the system in addition to the hole. The diffraction pattern in this case is at

its maximal complexity and brings out the distances RX = 2.67 Å, RA/A′ = 3.01 Å and

R(t). This latter quantity refers to the temporally varying iodine-iodine distance during
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the process γ. Determining it for various time delays thus permits, in principle, real time

visualization of atomic motions during this process. Practical possibilities of realizing

the experiment are discussed below. Experimental data are only available for times of

the order of 0.2 ns. Illustrated on Fig. 5.b, they show here again an overall agreement

between experiment and theory. It is worth noting that this agreement is not affected by

the presence of iodine-solvent cross terms. These terms are expected to be small since

fCl = fI/3 and fC = fI/9 for forward scattering and both fall off more rapidly than fI

with increasing θ. Indeed, they were shown from our Molecular Dynamics simulations

to be completely negligeable in ∆S(q, t) for q larger than 0.5 A−1.37 They were thus

not included into this model. Other secondary processes like laser heating of the sample

have neither been considered.

Let us now come back to the major question whether, or not, it is possible with

presently available techniques to “film” the atomic recombination in real time. The

answer is certainly no as far as the processes α and β are concerned; the signals do not

have a form appropriate for this sort of study. On the contrary, the visualization of these

motions is perhaps possible for the process γ, i.e. recombination through vibrational

relaxation in the X state. The q-resolved signals were thus calculated for the I2/CCl4

solution in a time interval between 0 and 500 ps. All relaxation processes are slower in the

solution I2/CCl4 than in I2/CH2Cl2, and the chances of success seem more substantial

here. Time constants were extracted from the laser spectroscopic experiments28−31:

τn was equal to 10 µs, τisc to 2.7 ns and τv to 0.175 ns. The initial populations nα,

nβ and nγ are not known and the calculations were done with nα = 0.05, nβ = 0.20

and nγ = 0.20; this estimate is only tentative. Some q-resolved diffraction patterns

calculated in this way are illustrated on Figs. 7.a,b. The effect of the finite X-ray pulse

duration may be estimated by comparing these two figures. The peaks in the 1.5–5.0 Å−1

region, positive or negative, undergo shifts to higher q values when τ increases from 0 to

500 ps. They are due to the shortening of I∗2 during the reaction I
∗
2−→I2. The calculated

values of the q shifts are of the order of 0.30 Å−1. The effect of convolution is to blur

dynamical information to a certain extent. It results that “filming” iodine molecule

during a vibrational relaxation is on the verge of feasibility with presently available

techniques. The problem thus merits further consideration.
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4 Discussion

The comparison with published data brings out the following points. The first concerns

the theory by Wilson et al.19−23 The main feature common to their and our work is

that electromagnetic fields are treated by Maxwellian electrodynamics, whereas the ma-

terial system is described by quantum mechanics. There are also important differences,

particularly in the way statistical aspects are handled. A wave function approach was

adopted by Wilson, whereas the density matrix technique is employed here. As this

latter technique is particularly powerful, a number of assumptions needed by Wilson are

not required here. For example, the fact that the signal ∆S(q, τ) is a convolution of

an X-ray pulse of finite width with a signal ∆Sinst(q, τ) corresponding to an infinitely

short X-ray pulse, is an assumption in Wilson’s work and a theory generated result for

us. Moreover, there is no need in the present work to assume that the X-ray pulse is

a superposition of a great number of statistically independent components. The two

theories lead in some cases to different predictions. The most important of them is that,

according to Wilson’s theory, in absence of beating phenomena, the signal is a superpo-

sition of signals from different species in the system; the intensity of the component j

is proportional to the fraction nj(t) of molecules in this state. In our theory this is true

only at long times when the optical excitation processes are decoupled from the reactive

processes. Beating phenomena are described similarly in both works.

The second point concerns a new paper on time-resolved X-ray spectroscopy, just

published by Mukamel et al.38 It appeared when our work was already written; nev-

ertheless, the following comments seem appropriate. Its main theme is the study of

extended X-ray absorption fine structure (EXAFS) and of related phenomena. Elec-

tromagnetic fields and molecular systems, and not only molecular systems, are treated

in the frame of quantum mechanics. The time scale separation of X-ray and optical

processes is considered too, although differently than here. The main difference between

the two papers is in the way the electronic density changes are treated. In Mukamel et

al. work they are calculated by statistical mechanics for both X-ray and optical excita-

tions. In our work, the former are included in Maxwell’s treatment of X-ray scattering,

whereas the latter are calculated by statistical mechanics. It can safely be stated that

these two theories are largely complementary.
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The present paper may be concluded by quoting Rentzepis et al.39: The field of

time-resolved X-ray diffraction and spectroscopy has made significant progress in the

past decade. The advances in source technology have stimulated a wide variety of novel

experiments using both synchrotrons and smaller laboratory size systems. They made

possible the direct detection and assignment of ultrafast structures during the course of a

photo-physical, chemical, or biological process. In favorable circumstances, time-resolved

X-ray diffraction experiments may provide real time “snapshots” of temporally evolving

molecular structures, which is a major challenge of the modern science. However, this

field still is at an early stage of its development, from both experimental and theoretical

point of view. Though, a rapid progress of this domain may be hoped for the present

decade.
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Figure 1: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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Figure 2: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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Figure 3: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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Figure 4: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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Figure 5: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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Figure 6: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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Figure 7: S. Bratos et al., Time-Resolved X-Ray Diffraction . . .
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